Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 28 Next »

Dewarp

Download the dewarp code here: https://bitbucket.org/mkraemer/decapod-dewarping

Installation Notes

DECAPOD STEREO DEWARPING
========================

required
------------------
- numpy
- scipy
- python-matplotlib
- bzr (to download pyvlfeat)
- git (to download pyflann)
- opencv
- pyflann
- pyvlfeat
- boost

bzr

  • Note bazaar is required to download pyVLFeat
  • Install sudo apt-get install bzr

git

  • Required for downloading pyflann.

numpy

  • Note numpy should be installed prior to pyVLFeat
  • Install sudo apt-get install python-numpy
  • Version assuming v1.6.2?

scipy

  • Install sudo apt-get install python-scipy
  • Version assuming 0.11.0rc2?

python-setuptools

  • Note Python Setuptools is required to install pyflann.
  • Install sudo apt-get install python-setuptools
  • Version ?

opencv

pyflann

boost

  • Note boost libraries are required for pyVLFeat.
  • URL http://www.boost.org/
  • Version v1.46.1 libboost-python1.46-dev
  • Install See pyVLFeat instructions below to install boost.

pyVLFeat

Installing pyVLFeat
To build pyVLFeat in Ubuntu 12.04 (with Python 2.7), change line 74 of the setup.py file to read LinkArgs.append('-lboost_python-mt-py27'). Then run sudo python setup.py build.

Alternatively you can install Python 2.6 on Ubuntu 12.04 by following the instructions here: http://www.ubuntututorials.com/install-python-2-6-ubuntu-12-04/

% sudo add-apt-repository ppa:fkrull/deadsnakes

Run Update:
% sudo apt-get update

Install your flavor:
% sudo apt-get install python2.6 python2.6-dev

2. Download pyvlfeat: bzr branch lp:pyvlfeat

3. Build pyvlfeat by running sudo python setup.py build


example usage - calibration
---------------------------
./calibrate.py calibration-images 9 6 calibration-data

This uses the chessboard images in directory calibration-images. Each
chessboard has 9x6 inner corners. The resulting camera matrices are 
persisted into directory calibration-data.

example usage - dewarping
-------------------------
./dewarp.py calibration-data left.jpg right.jpg dewarped.png

This uses the calibration matrices from directory calibration-data to 
perform stereo dewarping of the image pair given by left.jpg and right.jpg. 
The dewarped output is then persisted to dewarped.png

Calibration notes

  • 6 minutes to run calibration on 2 cores, 2 GB VM.
  • 6 minutes to run calibration on 4 cores, 2 GB VM.
  • No labels