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Over the past four years, we developed 
PhoneGuide, an adaptive museum guid-
ance system that uses mobile phones 

for on-device object recognition (see Figure 1). 
PhoneGuide allows museum visitors to use their 
own mobile phones for retrieving information 
about exhibited objects. This is possible by taking 
a photograph of presented objects; the system then 
recognizes them automatically using image clas-
sifi cation techniques. After identifying an object, 
PhoneGuide provides corresponding multimedia 
information, such as replayed audio or displayed 
text and video content. Compared to audio guides, 
we believe that this approach is more intuitive and 
more fl exible for museum visitors, and more eco-
nomic for museum owners.  

In contrast to several related methods, our sys-
tem performs classifi cation directly on the local 
phones instead of sending images to a remote 
server—as such, classifi cation requests don’t have 
to be processed sequentially on a server (which 
can lead to unacceptably long response times). 
This makes our approach scalable with respect to 
the number of users. 

But rather than focusing solely on the object 
recognition task from an image-processing point 
of view, we created a self-improving adaptive sen-
sor network system that supports image recogni-
tion with user feedback, ad hoc communication, 
and location information.

This approach lets us apply a relatively simple 
but fast classifi cation algorithm based on global 
color features and artifi cial neural networks. It 
reaches a maximal recognition rate of 92.6 percent 
for identifying 139 museum objects from different 
perspectives and distances and under realistic con-
ditions. In contrast to emerging related approaches 
that apply local feature extraction techniques, such 
as Speeded Up Robust Features (SURF), in combi-
nation with a nearest-neighbor matching strategy,1

our system is much faster (approximately by fac-
tor of 5) and more scalable than these approaches 
given that the classifi cation performance doesn’t 

decrease when the number of training images per 
object increases.

Consequently, a continuous collection of cap-
tured image data, together with user feedback, is 
possible in our system and leads to specialized and 
robust image classifi ers, such as neural networks, 
over time. This lets the system automatically adapt 
to different environmental situations within a mu-
seum—such as varying lighting conditions—that 
it couldn’t initially capture. User studies (which 
we’ll examine in more detail later) strengthen our 
approach and also revealed that visitors won’t tol-
erate waiting times for recognition that are more 
than 2.1 seconds on average.

To achieve realistic classifi cation rates in dy-
namic and complex public environments (indoors 
or outdoors) as well as an applicable performance 
rate, an intelligent system adaptation is an essen-
tial component. This article gives an overview of 
the PhoneGuide system’s different components.

Adaptive	classifi	cation
The PhoneGuide system’s major challenge is to lo-
cate and recognize museum objects automatically in 
captured images. Often hundreds or even thousands 
of objects must be reliably classifi ed under varying 
lighting conditions and from arbitrary perspectives 
and distances. Small objects located in showcases, 
for instance, can’t be photographed separately and 
must be distinguished automatically from each oth-
er in a single image. The object recognition process 
becomes even more demanding if a mobile device’s 
computational possibilities are restricted.

To overcome these limitations, we developed an 
adaptive classifi cation infrastructure (see Figure 
2) that continuously collects image data and user 
feedback to adapt and improve the local classifi ca-
tion process over time. This is a crucial element 
because we can’t reliably predict how visitors ap-
proach exhibits or how objects appear over time 
when infl uenced, for instance, by daylight. Addi-
tionally, our system carries out a two-step recogni-
tion process for identifying multiple objects in one 
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image and shares classification results with other 
users through ad hoc phone-to-phone networks to 
improve the recognition rate.

PhoneGuide’s adaptive classification infrastruc-
ture consists of a stationary server and an arbitrary 
number of mobile phones and sensor boxes. The 
server continuously carries out two main tasks. 
First, it constantly collects and stores adaptation 
parameters (user feedback, image data, and light-
ing information) that individual mobile phones 
have gathered during runtime. As an outcome 
of the mobile object identification, a probability- 
sorted objects list is displayed on the phone after the 
user takes a photograph of an exhibit. The user selects 
the correct object from among others (represented as 
a photograph) from this list with a minimum num-
ber of clicks. The mobile application stores the cor-
rect object IDs as well as the captured images, and 
then transmits the data from the phones to the server 
when the user leaves the museum. Note that no on-
line connection exists between the mobile devices 

and the server during runtime. This sets our system 
apart from related approaches that transmit captured 
images to a remote server for the recognition process.2 
Second, the server applies the collected adaptation 
parameters for creating and improving the required 

Figure 1. The basic concept of the PhoneGuide system in a museum. 
Our system uses adaptive classification in dynamic large-scale museum 
environments. Ad hoc sensor networks and phone-to-phone 
communication support PhoneGuide.

Figure 2. Overview of the adaptive classification infrastructure. During application, each phone collects 
position and lighting data from distributed sensor boxes, as well as user feedback and image data on the local 
devices. When leaving the museum, this information is transmitted to the server, which stores and applies the 
gathered information to generate and improve the required classification elements. The adapted elements 
are transmitted to new visitors’ mobile phones upon entering the museum. Through the phone-to-phone 
interface, mobile devices broadcast evaluated classification data to improve the local recognition process. 
Sensor boxes provide information on the current userís location and lighting conditions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 6, 2008 at 19:48 from IEEE Xplore.  Restrictions apply.



100	 July/August 2008

Projects in VR

classification elements, such as image classifiers, rules, 
and spatial relationships, offline. The server transmits 
the improved elements to the mobile phones of new 
visitors when entering the museum.

To accomplish these tasks, the server consists 
of three major components. One module handles 
the preprocessing steps (the object tracker and 
spatial-relationship creator) that classify multiple 
objects in a single image. Furthermore, the server 
possesses a second module called the preproces-
sor that prepares image data (keyframe extraction 
and clustering) for training image classifiers. The 
third module dynamically creates rules and image 
classifiers based on the adaptation parameters. The 
rules, which currently consist of a lookup table, 
determine which classifier must be selected for the 
current user’s location.

The front-end application on the mobile device of-

fers a user interface and tracks actual recognition 
results (unnoticed by the user), and as mentioned 
earlier, provides user feedback. Scene recognition is 
performed when users take a photograph; the mo-
bile application then divides it into subpatches and 
extracts global color features from each patch, which 
serve as input for three-layer neural networks.3 Be-
sides this function, classifiers can use spatial rela-
tionships to identify multiple objects within the 
captured image after the scene classification. We ap-
ply the phone-to-phone interface for exchanging lo-
cal classification results dynamically during runtime 
(that is, without users having to check in or out at 
the server when entering or leaving the museum). 
These parameters won’t be used for retraining the 
classifiers on the phone (as they would be used on 
the server) but for adapting pretrained classifiers to 
handle momentary situations in the museum. Sen-
sor boxes in the museum provide information to 
determine the current user’s location. In addition, 
we’re currently working on using illumination sen-
sors attached to the sensor boxes (see Figure 2). The 
sensors record the illumination state and transmit 
the data to the mobile phones. With only minor ad-
ditional computation time, our recognition process 
will become invariant to extreme illumination situ-
ations, given that the phones automatically select 

the optimal classifier that was trained for the cor-
responding illumination state.

Perspective invariance and large-scale 
classification
In practice, our system must be flexible enough to 
compensate for individual user behavior. The ways 
in which visitors approach and observe an object 
can vary greatly, leading to significantly different 
perspectives in photographs taken for classification. 
For ensuring an initially acceptable recognition 
rate, the classification process must be scale and 
perspective invariant for possible user locations.

To accomplish this, we apply mobile phones’ 
video-capturing functionality to record videos 
containing multiple perspectives and distances of 
each museum object.4 The server preprocesses these 
videos by extracting and clustering keyframes, as 
indicated previously. The aim is to eliminate re-
dundant frames and select those frames that con-
tain descriptive perspective and scale information. 
The remaining frames are forwarded to the image 
classifier creator which—based on these frames—
configures and trains an optimized classifier. 

Although the system adapts to individual user 
behavior for each object, one classifier can’t cope 
with hundreds or thousands of objects in a mu-
seum. Therefore, the sensor boxes provide infor-
mation required to determine the users’ rough 
locations through a simple pervasive tracking 
method.3 Each box is equipped with a Bluetooth 
chip that transmits a unique ID to all mobile 
phones located in its signal range (up to 10 me-
ters). All sensor box IDs in the network together 
with their known positions and signal ranges span 
a coarse grid of possibly overlapping signal cells. 
Estimating the cells in which a phone is currently 
located by analyzing all detectable sensor boxes in-
dicates to each device its own rough position with-
in the museum. Consequently, for each cell, one 
classifier is trained and the correspondences are 
stored in a lookup table. Before the classification 
is carried out on the mobile phone, the application 
selects the correct image classifier on the basis of 
the current location. In our test environment, an 
accuracy of the location estimation of 5 to 7 me-
ters was adequate to ensure a constant recognition 
rate independent of the number of objects.

Subobject recognition
Many exhibits in museums are protected against 
environmental influences or human curiosity by 
placing them into showcases or behind other bar-
riers. In these cases, visitors can’t take photographs 
of individual objects without capturing other ob-

The front-end application on the  
mobile device offers a user interface and 

tracks actual recognition results,  
and provides user feedback.
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jects simultaneously. To overcome this, our frame-
work identifies multiple objects (subobjects) in one 
image. Classifying subobjects happens in a two-step 
recognition process; after deriving the correct scene 
context when recognizing a group of objects, the 
mobile application automatically classifies the indi-
vidual subobjects in the photograph. It then labels 
the results and links the subobjects with a subob-
ject list (see Figure 2). From this list, the user can 
finally select the object of interest, prompting the 
system to present multimedia content.

Our subobject classification technique is based 
on spatial relationships that give us the opportunity 
to recognize similar objects. They are precomputed 
offline on the server by automatically tracking in-
dividual subobjects through all video frames, and 
by computing relative geometric relationships, such 
as maximal search angles and distances between 
all subobjects. Additionally, the server determines 
and stores the size of each subobject’s bounding 
box and its individual classification features. The 
system then uses these features to train individual 
classifiers. The trained classifiers—the scales as well 
as the spatial relationships—are transmitted to the 
mobile devices during updates with the server.

Classifying subobjects on the mobile device is 
performed by the application by identifying an an-
chor object first, which it assumes is located in the 
center of the photograph. To cope with different 
scales, we apply multiresolution classification to the 
captured image, thereby ensuring perspective in-
variance, as explained earlier. We then use the scale 
and position of the anchor object’s bounding box to 
select the correct spatial relationships. Based on the 
maximal search angles and distances to neighbor-
ing subobjects, a search mask shifts spirally around 
the initial position until the classifier’s excitation 
is above a predefined threshold for a certain posi-
tion. This indicates that a new subobject is found if, 
in addition, the excitations for neighboring search 
points are lower than for this position. The appli-
cation considers possible rotations by aligning the 
spatial relationships to the mobile phone’s current 
orientation. We can detect rotations using either 
a built-in accelerometer or by testing for the most 
likely rotations (90, −90, or 180 degrees). Because 
the spatial relationships can be optimized continu-
ously the more subobjects have been detected, the 
classification process will speed up with each de-
tected subobject. The adjusted spatial relationships 
can be stored on the phone and transmitted to the 
server as part of the adaptation process.

Phone-to-phone communication
To improve the classification process during run-

time, the phone-to-phone communication lets the 
system broadcast current classification results of 
individual phones to all other phones that are cur-
rently in the proximity. 

The implicit user feedback leads to a mapping be-
tween the object the user selects and the probabil-
ity-sorted objects list suggested by the classification 
process. The application weights the candidates on 
the objects list on the basis of their rank, and they are 
then added to corresponding entries of a correlation 
matrix. These entries correlate selected and recog-
nized objects and are concatenated with the prob-
ability lists of new classification results. This leads 
to a continuous and ad hoc adaptation of the local 
classification process, given that local user feedback 
as well as the correlation matrices broadcasted from 
other phones are frequently merged while visitors are 
moving through a museum. As for the location esti-

mation, this process is carried out in the background 
and remains unnoticed by the user.

In cooperation with the City Museum of Wei-
mar, we were able to test and evaluate our sys-

tem during regular opening hours for the past two 
years. In our current implementation, we apply a 
well-selected set of global image features (mean 
and variance in RGB color channels, as well as 
a 10-bin color histogram) extracted from images 
that have a resolution of 160 to 120, and three-
layer neural networks for image classification. In 
total, we applied 7,464 frames (min: 15, max: 80, 
average: 51.8 per object) for training the neural 
networks. During evaluation, nine sensor boxes 
spanned 16 different location cells. The entire size 
of all necessary classifiers was 350 Kbytes. This 
outperforms approaches that apply local image 
descriptors (because they have to store thousands 
of descriptors individually). On Nokia 6630 mo-
bile phones, our local object recognition algorithm 
implemented in Java 2 Micro Edition requires on 
average 3.8 seconds (including a duration for cap-
turing the image and presenting the objects list).

On newer phones (such as the Nokia N95), the 
feature extraction takes 370 milliseconds (on a 

In cooperation with the City Museum 
of Weimar, we were able to test and 
evaluate our system during regular 
opening hours for the past two years.
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Nokia 6630, this takes 2250 ms) and the classifica-
tion 100 ms (on a Nokia 6630, this take 200 ms) 
for 34 trained objects within the same location cell. 
For 139 objects, we achieved a recognition rate of 
92.6 percent for users who were familiar with our 
system and 82 percent for totally inexperienced mu-
seum visitors. In the context of an additional user 
study we carried out,4 we achieved these results un-
der realistic conditions; with arbitrary perspectives 
and scales and evaluated over four business days at 
different times and illumination situations. Twelve 
of these 139 exhibits consisted of three to eight sub-
objects (on average: 5.4); we achieved a recognition 
rate of 92.3 percent (85.9 percent for inexperienced 
users) for identifying these sub-objects. Depending 
on the number of sub-objects, their recognition 
requires 5.2–5.8 seconds on a Nokia 6630 and ap-
proximately 2.0–3.0 seconds on a N95.

On the basis of additional tests, we can also show 
that a temporal adaptation through the server leads 
to a continuous improvement of the recognition rate 
over time.4 The phone-to-phone updates result in 
quick adaptations to spontaneous changes. In initial 
experiments with 34 objects, the classification rate 
increased from 92.0 percent to 97.1 percent after 
only three updates. Besides estimating the quanti-
tative benchmark data, we were interested in the 
subjective impression of museum visitors after using 
our system. Therefore, we asked 15 subjects (average 
age 27.4, seven females and eight males) to fill out 
a questionnaire and to rate different characteristics 
of the system (1 = worst, 7 = best) during our user 
study. Handling (rated 5.9), subjective recognition 
rate (5.8), and overall performance (6.1) were highly 

ranked. The subjects could also well imagine that 
PhoneGuide can be used instead of audio guides in 
museums (5.8). The most criticized aspect of our ap-
proach was the relatively long waiting time required 
for the device localization. In our current implemen-
tation, it takes approximately 13 seconds (depending 
on the number of Bluetooth devices) to scan nearby 
Bluetooth emitters. This waiting time occurs only 
during transitions between signal cells—the waiting 
time for the recognition process remains constant. In 
addition, another user study with 18 subjects revealed 
that they’re not willing to concede much time for the 
overall recognition process: 11 percent of all subjects 
would prefer a recognition time of less than 1 second, 
50 percent of 1 to 2 seconds, 33 percent of 2 to 4 sec-
onds, and 1 subject would accept 4 to 6 seconds.

The most related approach to our system has im-
plemented an improved version of SURF on current 
mobile phones for outdoor applications.1 However, 
because it uses a nearest-neighbor matching strat-
egy, adaptive approaches can’t be performed with-
out a loss of classification performance or runtime. 
The size of our classification data scales much less 
with an increasing number of objects and doesn’t 
increase at all with a rising number of training im-
ages per object. This benefits a fast wireless trans-
mission, if necessary.�
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