
An Ontology-Based Method for Universal Design of User Interfaces

Elizabeth Furtado, João José Vasco Furtado, Wilker Bezerra Silva, Daniel William Tavares
Rodrigues, Leandro da Silva Taddeo, Quentin Limbourg*, and Jean Vanderdonckt*

Universidade de Fortaleza

NATI - Célula EAD
Washington Soares, 1321 – Bairo Edson Queiroz

Fortaleza (Ceará), BR-60455770 Brazil
Elizabet@feq.unifor.br, vasco@feq.unifor.br,

Wilker@unifor.br, Danielw@unifor.br,
Taddeo@unifor.br

*Université catholique de Louvain
Institut d’Administration et de Gestion

Place des Doyens, 1
Louvain-la-Neuve, B-1348 Belgium

Limbourg@qant.ucl.ac.be
Vanderdonckt@qant.ucl.ac.be

Workshop on Multiple User Interfaces over the Internet: Engineering and Applications
Trends submission category: paper

Abstract: Universal design of user interfaces attempts to cover design issues in multiple con-
texts of use where multiple types of users may carry out multiple tasks, possibly on multiple
domains of interest. Existing design methods do not necessarily support designing such user
interfaces. A new design method is presented for this purpose in three layers: (i) a conceptual
layer where a domain expert defines an ontology of concepts, relationships, and attributes of
the domain of discourse; (ii) a logical layer where a designer specifies multiple models based
on the previously defined ontology; and (iii) a physical layer where a developer derives mul-
tiple user interfaces from the previously specified models with alternatives.

Keywords: automated generation of user interfaces, computer-aided design of user interfaces,
conceptual level, context of use, instantiation, logical level, model-based approach, modeling,
ontology, physical level, universal design.

1. Introduction
Universal design [10] adheres to a vision where user interfaces (UIs) of interactive applica-
tions are developed for the widest population of users in different contexts of use by taking
into account differences such as preferences, cognitive style, language, culture, habits, con-
ventions, and system experience. Universal design of single or multiple UIs (MUIs) poses
some difficulties due to the consideration of these multiple parameters depending on the sup-
ported differences. In particular, the multiplicity of parameters dramatically increases the
complexity of the design phase by adding many design options among which to decide. In ad-
dition, methods for developing UIs do not mesh well with this variety of parameters as they
are not necessarily identified and manipulated in a structured way nor truly considered in the
design process.

The goal of this paper is to present a structured method addressing parameters required for
universal design. The method is supported by a suite of tools all based on an ontology of the
domain of discourse and models that capture instantiations of concepts identified in this on-
tology for producing multiple UIs for one design situation. These different UIs exhibit differ-
ent presentation styles, dialogue genres, and UI structures.

The method structures the UI design in three levels of abstraction as represented in fig. 1:

1. The conceptual level enables a domain expert to define ontology of concepts, relation-
ships, and attributes involved in the production of multiple UIs.

2. The logical level allows designers to capture requirements of a specific UI design case by
instantiating concepts, relationships, and attributes with a graphical editor. Each set of in-
stantiations results in a set of models for each considered design case (n designs in fig. 1).

3. The physical level helps developers in deriving multiple UIs from each set of models
thanks to a model-based UI generator: in fig. 1, m possible UIs are obtained for UI design
#1, p for UI design #2,…, r for UI design #n. The generation is then exported to imported
in a traditional development environment for any manual edition (here, MS Visual Basic).

Ontology editor

Concept graphical editor

Model-based UI generator

Microsoft Visual Basic

Ontology for UI design

Models for
UI design #1

Models for
UI design #2

Models for
UI design #n

UI 1.m for
UI design #1

UI 1.2 for
UI design #1

UI 1.1 for
UI design #1

UI 2.p for
UI design #2

UI 2.2 for
UI design #2

UI 2.1 for
UI design #2

UI n.r for
UI design #n

UI n.2 for
UI design #n

UI n.1 for
UI design #n

Final UI 1.m
for design #1

Final UI 1.2
for design #1

Final UI 1.1
for design #1

Final UI 2.p
for design #1

Final UI 2.2
for design #1

Final UI 2.1
for design #2

Final UI n.r
for design #n

Final UI n.2
for design #n

Final UI n.1
for design #n

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

Conceptual level

Logical level

Physical level

Universal design
Figure 1. The different levels of the proposed method for universal design of user interfaces.

The remainder of this paper is structured as follows: section 2 provides a state of the art of
methods for developing UIs with a focus on universal design. The three levels are progres-
sively described: conceptual in section 3, logical in section 4, and physical in section 5. Al-
though the method is generic, one particular application of this method is demonstrated
throughout the paper by the usage of a particular series of supporting tools on the same case
study: patient admission at a hospital. Each level is described by introducing motivation and
goals, by presenting a supporting tool with required input/output, by showing how it ad-
dresses the case study, and by discussing some advantages of the layer and its associated tool.
Section 6 summarizes the main points of the paper.

2. Related Work
The Author's Interactive Dialogue Environment (AIDE) [4] is an integrated set of interactive
tools enabling developers to implement UIs by directly manipulating and defining its objects,
rather than by the traditional method of writing source code. AIDE provides developers with a
more structured way to develop UI than with traditional, yet radically different, “rush-to-
code” approaches where unclear steps possibly result in a poorly usable UI.

User-Centered Development Environment (UCDE) [1] is an object-oriented UI development
method investigating how software development can function as an extension of business
process improvements. Business-oriented components (BOCs) are software objects that
model business rules, processes, and data from the end-user’s perspective. They clearly map
this information onto UI objects that are compatible by construction with the information. The
advantage of UCDE is a smooth process starting from high-level abstractions to final UIs.

Another methodological framework for UI development is provided in [6,7] which enables to
integrate usability issues into the software development process from the beginning. The focal
point of this approach is a psychologically based formal task description, which serves as the
central reference for assessing the usability of the user interface under development. This con-
tribution emphasizes the need of a task model as starting point for ensuring UI usability,
whereas UCDE emphasizes the need of a domain model.

The MUSE method [8] uses structured notations to specify other elements of the context of
use such as organizational hierarchies, conceptual tasks, and domain semantics. Moreover,
graphical structured notations are proved to communicate UI design to users more easily.

In the above contributions, we see the importance of having a structured way to capture, store,
and manipulate multiple elements of the context of use, such as task, domain, and user. Al-
though the above methods partially consider this information, they do not consider designing
multiple UIs where task [2,3], domain, and user parameters are varying, possibly simultane-
ously. Only the unified process [10] suggests deriving multiple refinements of a task model to
cope with individual differences induced by universal design. However, this contribution is
focussing more on task modeling operations than on steps and information required to pro-
gressively take multiple users in multiple contexts of use into account. The following method
attempts to fill this gap by dividing the main problem into the three subsequent levels.

3. Conceptual Level
Motivation and goals. Each method to design UI displays its own set of concepts, relation-
ships, and attributes, along with their possible values and ways to incorporate them in the
method. However, this set is completely embedded in the method and its supporting tool, thus
making the method little flexible to consider multiple parameters for universal design. When
this set is hidden, the risk of manipulating fuzzy and unstructured pieces of information may
occur. The conceptual level is therefore intended to enable domain experts to identify com-
mon concepts, relationships, and attributes involved in any particular way in universal design.

Description. An ontology can explicitly define any set of concepts, relationships, and attrib-
utes that need to be manipulated in a particular universal design [5,11]. The ontology notion
comes from the Artificial Intelligence context where it is identified as the set of formal terms
with one represents knowledge, since the representation completely determines what “exists”
for the system. We hereby define a context of use as the global environment in which a user
population, perhaps with different profiles, skills, and preferences, are carrying out a series of
interactive tasks on one or multiple semantic domains. In universal design, it is expected to
benefit from the advantage of considering any type of the above information to produce mul-
tiple UIs depending on the varying conditions. These pieces of information of a context of use

can be captured in different models [9]. A model is hereby defined as a set of postulates, data
and inferences presented as a declarative description of a UI facet. Many facets do exist as
well as related models: task, domain, user, interaction device, computing platform, applica-
tion, presentation, dialogue, help, guidance, tutorial, organizational environment. A model is
typically built as a hierarchical decomposition of abstract concepts into several refined sub-
levels. A model should also encompass relations between these concepts with roles, as well as
for models, and between models.

Case study. For the simplicity of this paper, the context of use is focusing on three models:
1. A domain model defines the data objects that a user can view, access, and manipulate

through a UI. These data objects belong to the domain of discourse. A domain model can
be represented as a decomposition of information items, any item may be iteratively re-
fined into sub-items. Each such item can be described by one or many parameters (such as
data type, length). Each parameter possesses its own domain of possible values.

2. A task model is a hierarchical decomposition of a task into sub-tasks to end-up with ac-
tions which are no longer decomposed [8,11]. The model can then be augmented with
temporal relationships stating when, how and why these sub-tasks and actions are carried
out. Similarly to the domain model, a task model may hold a series of parameters with
domains of possible values. For instance, task importance (low/medium/high), task struc-
ture (low/medium/high decomposition), task critical aspects (little/some/many), and re-
quired experience (low/moderate, high) are often considered.

3. A user model consists of a hierarchical decomposition of the user population into stereo-
types. Each stereotype gathers people sharing the same value for a given set of parame-
ters. Each stereotype can be further decomposed into sub-stereotypes. For instance, the
population diversity may be reflected by many user parameters such as language, culture,
preference (manual input vs. selection), task experience (elementary/medium/ complex),
system experience (elementary/medium/complex), motivation (low/medium/ high), and
experience of a complex interaction media (elementary/medium/complex).

Figure 2. The ontology editor at the mo deling stage.

Fig. 2 graphically depicts how the ontology editor can be used at the modeling stage to input,
define, and structure concepts, relationships, and attributes of models used to describe a con-
text of use. Here, the three models are represented and they all share a description by informa-
tion parameters. Each parameter has a domain, each domain has a set of values, possibly
enumerated. The composed-of relationship denotes aggregation, while has denotes properties.

Discussion. A definition of an ontology fosters structured UI design based on explicit con-
cepts, relationships, and attributes rather than eclectic or extreme programming where the
code is directly produced or rather than design methods which are not open to incorporate ex-
ternal information, such as required by universal design. Such ontology facilitates multi-
disciplinarity when people having different backgrounds need to gather for collaborative or
participatory design. The big win of this level is that the ontology can be defined once and
used as many times as wished. When universal design requires the consideration of more in-
formation in models or more models, this ontology can be updated accordingly and so is up-
dated the method that supports universal design of UIs.

4. Logical level
Motivation and goals. Each model defined at the conceptual level is now represented with its
own information parameters. In the context of universal UI, a user model for instance is moti-
vated by the observation that no unique UI may fit to an “average” user. Rather, multiple user
stereotypes, stored as user models, allows the consideration of different user types in the same
design. Any user modeling can be followed since there is no predefined/fixed set of parame-
ters. This shows the generality of the method proposed here to support universal design.

Description. The set of concepts and attributes defined in the ontology are instantiated for
each context of use of a domain. In this model-based approach, it means each model, which
composes a context of use, is instantiated when its parameters are defined with domains of
possible values.

Case study. The ontology editor is now used to instantiate the context of use, the relation-
ships and attributes of models for the Medical Attendance domain involved in patient admis-
sion. Fig. 3 graphically depicts the Urgency Admission context of use and the attributes of
models of task, user and domain. There are two tasks instantiated: to admit patient and to
show patient data. The first one is activated by a secretary and uses patient information dur-
ing its execution. To the user model of the secretary the parameters considered are: her/his
experience level, input preference, information density with the enumerated values low and
high.

The information items describing a patient are the following: date of the day, first name, last
name, birth date, address, phone number, gender and civil status. Information items reagard-
ing insurance affiliation and medical regimen can be described similarly. The parameters of
an information item of a domain model depend on the UI design process.

For instance, parameters and values of an information item used to generate UIs in [12] are:
data type (calendar, Boolean, graphic, integer, real, or alphanumeric), length (n>1), domain
definition (know, unknown, or mixed), interaction way (input, output, or input/output), orien-
tation (horizontal, vertical, circular, or undefined), number of possible values (n>1), number
of values to choose (n>1), and precision (low or high).

Figure 3. The ontology editor at the instantiation stage.

Discussion. Models defined and input at the logical level are all consistently based on the
same ontology. The big win is that when the ontology changes, all associated models change
accordingly since the ontology is used as a reference input for the graphical editor. The
graphical nature of the editor improves the legibility and the communicability of information,
while information which cannot be represented graphically is maintained in text properties.
The models serve for both requirements documentation and UI production in the next level.

5. Physical level
Motivation and goals. The main goal of the physical level relies in its ability to exploit in-
stantiations captured in individual models to produce multiple UIs, possibly for different
computing platforms, development environments, or programming languages. This level is
the only one which is dependent of the target hardware/software configuration intended to
support the UI.

Description. Instantiations of the previously defined models, along with the values of their
parameters, are stored in the logical level into specification files. Each specification file basi-
cally consists of a hierarchical decomposition of the UI models into models, parameters, val-
ues, etc. maintained in an ASCII file. This file can in turn be imported in different UI produc-
ers as needed. Here, we are using SEGUIA (fig. 4), a model-based interface development that is
capable of automatically generating MS Visual Basic code for a running UI from any specifi-
cation file. Of course, any other tool which is compliant with the model format and/or which
can import the specification file may be intended to produce running UI for other design
situations, contexts of use, user models, or computing platforms. SEGUIA is able to automati-
cally generate several UI presentations to obtain multiple UIs. These different presentations
are obtained

• In an automated manner, where the developer only launches the generation process by se-
lecting which layout algorithm to rely on (e.g. two-column format or right/bottom strat-
egy).

• In a computer-aided manner, where the developer can see at each step what are the results
of the generation, can “intervene”, and govern the process before reaching a final status.

Figure 4. Example of a final UI for the considered case study during manual editing.

Case study. In our case study, information items and their values introduced at the instantia-
tion level (fig. 3) are imported in a list box (left in fig. 4) of information items, each of which
is specified separately (right in fig. 4). If needed, this information can still be edited (in fig. 4,
for instance, gender has been renamed to sex). By selecting Generation in the menu bar, the
developer launches the generation process and may produce different user interfaces, depend-
ing on rules used for this purpose. Selection rules automatically select concrete interaction ob-
jects (or widgets) from parameters and their values for each information item. For instance,
this information item is mapped onto a radio-button with two values as illustrated in the first
part of fig. 5. Selection rules are gathered in different selection strategies. Some strategies ap-
ply rules for selecting input/output widgets, while others prefer graphical representations. For
example, in the second part of fig. 5, a graphical representation of the same information item
has been preferred with reference to relevant icons. The selected widgets are then automati-
cally laid out according layout algorithms based on presentation guidelines.

Figure 5. Examples of different final UIs.

For instance, the first part of fig. 5 reproduces a rather straightforward presentation, whereas
the second part optimised the presentation by moving the Civil Status group box and by resiz-
ing it so that it is properly aligned with other widgets.

Discussion. This level allows sharing or reusing previously defined models for several UI de-
signs, which is particularly useful when working in the same domain where similar informa-
tion can be found. It also encourages users to work at a higher level abstraction than merely
the code level and to explore multiple UI alternatives for the same UI design case. This flexi-
bility may even produce UIs with unforeseen, unexpected or under-explored features. The big
win is that when the set of models change, all UIs that can be created from this set can change
accordingly. The design space is often referred to as the set of all possible UIs that can be cre-
ated from an initial set of models for one UI design.

6. Conclusion
The main contributions and benefits of the method presented in this paper are:
• UI design method can be explicitly structured into three separate levels (i.e., conceptual,

logical, and physical, as frequently found in other disciplines such as data bases, software
engineering, and telecommunications. Each level can be considered as a level of abstrac-
tion from the physical level as represented in fig. 6. The physical level is the instance level
where instances of the case study are analysed, the logical level is the model level where
theses instances are mapped onto relevant abstractions, and the conceptual level is the
metamodel level where abstractions manipulated in the previous levels can be aggregated
to identify the concepts, relationships, and attributes used in a particular method.

• The three levels make it possible to apply the “separation of concern” principle: (i) a
definition of useful concepts first by someone who is aware of UI techniques such as user-
centered design, task analysis, and human factors; (ii) a model definition where, for each
UI design, multiple sets of models can be defined on the same basis wih no redefinition of
previously defined concepts; and (iii) multiple UI creation: for each set of UI models,
several UIs can be created by playing with parameters supported by the UI generator and
manual editing is allowed when needed, thus achieving the goal stated in the introduction.

• The big win of the method is that change operated at any level are instantly propagated to
subsequent levels: when the ontology changes, all possible models change accordingly;
when a model change, all possible specification change accordingly and so the set of all
possible UIs that can be created (the UI design space).

Urgency admission
To admit patient

Secretary

Patient Information
Date of the Day

Firstname
Lastname

Data type
Data length

Number of Possible Values

{alphanumeric,
integer,
...}

Date

Context of use
Task model

User model

Domain model
Information item

..........
..........

Information
parameter......

..........

Information
domain

Information
Value

Concepts

Relationships

Attributes

Figure 6. The different levels of the proposed method.

References
1. Butler, K.A., Designing Deeper: Towards a User-Centered Development Environment Design in Context,

Proceedings of ACM Symposium on Designing Interactive Systems: Processes, Practices, Methods, &
Techniques DIS´95 (Ann Arbor, 23-25 August 1995), ACM Press, New York, 1995, pp. 131-142.

2. Card, S., Moran, T.P., Newel, A., The Psychology of Human-Computer Interaction, Lawrence Erlbaum As-
sociates, Pub., Hillsdale, 1983.

3. Gaines, B., A Situated Classification Solution of a Resource Allocation Task Represented in a Visual Lan-
guage, Special Issue on Models of Problem Solving, International Journal of Human-Computer Studies,
Vol. 40, No. 2, 1994, pp. 243-271.

4. Gimnich, R., Kunkel, K., Reichert, L., A Usability Engineering Approach to the Development of Graphical
User Interfaces, Proceedings of the 4th International Conference on Human-Computer Interaction HCI In-
ternational'91 (Stuttgart, 1-6 September 1991), Vol. 1, 1991, pp. 673-677.

5. Guarino, N., Formal Ontology, Conceptual Analysis and Knowledge Representation: The Role of Formal
Ontology in the Information Technology, International Journal of Human-Computer Studies, Vol. 43, Nos.
5/6, 1995, pp. 625-640.

6. Hartson, H.R., Hix, D., Human-Computer Interface Development: Concepts and Systems for its Manage-
ment, ACM Computing Surveys, Vol. 21, No. 1, 1989, pp. 241-247.

7. Hix, D., Developing and Evaluating an Interactive System for Producing Human-Computer Interfaces, Be-
haviour and Information Technology, Vol. 8, No 4, 1989, pp. 285-299.

8. Lim, K.Y., Long, J., Structured Notations to Support Human Factors Specification of Interactive Systems
Notations and Tools for Design, Proceedings of the BCS Conference on People and Computers IX HCI'94,
Cambridge University Press, Cambridge, 1994, pp. 313-326.

9. Puerta, A.R. A Model-Based Interface Development Environment, IEEE Software, Vol. 14, No. 4,
July/August 1997, pp. 41-47. Accessible at http://www.arpuerta.com/pubs/ieee97.htm

10. Savidis, A., Akoumianakis, D., Stephanidis, C., The Unified User Interface Design Method, Chapter 21, in
"User Interfaces for All: Concepts, Methods, and Tools " C. Stephanidis (ed.), Lawrence Erlbaum Associ-
ates, Pub., Mahwah, 2001, pp. 417-440.

11. Top, J., Akkermans, H., Tasks and Ontologies in Engineering Modelling, International Journal of Human-
Computer Studies, Vol. 41, No. 4, 1994, pp. 585-617.

12. Vanderdonckt, J., Berquin, P., Towards a Very Large Model-based Approach for User Interface Develop-
ment, Proceedings of 1st Int. Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edinburg,
5-6 September 1999), N.W. Paton & T. Griffiths (eds.), IEEE Computer Society Press, Los Alamitos, 1999,
pp. 76-85.

