
Kuali Student and Fluid

Leo Fernig, September 20th, 2007

Notes on Kuali Student and Fluid

Introduction ...2
User experience design guides...3
Integrating the user experience with the environment of the millennial generation4
Exposing Kuali Student in the campus portal..4
Internationalization..4
Visualization tools ..4
Visual stereotypes...5

The workbench stereotype...6
The form stereotype...6
The wizard stereotype..6

Code templates for the visual stereotypes ..7

Introduction
The user interface design project of Kuali Student consists of

1. Defining Portal-portlet interactions. Ie what parts of KS are presented in the
Portal?

2. Identifying existing best practices around standard widgets. This information
should be gleaned directly from existing best practices manuals.

3. Defining a set of visual stereotypes
4. Internationalization
5. Code templates for the visual stereotypes. When these templates are

completed they will include::
a. Sample code that can be executed
b. Documentation
c. Diagrams

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

User experience design guides

Kuali Student teams should study existing publications on user experience. This applies
to both style guides and more general works on user experience. We should consider
choosing some standard works. For example:

1. Microsoft Windows User Experience (Microsoft Professional Editions)
(Paperback)

2. Designing Interfaces: Patterns for Effective Interaction Design by Jenifer
Tidwell

There should be standard behaviours for common widgets:

o Buttons (text and graphics)
o Grids
o Tabs
o Progress bars
o Text boxes
o Error messages (pop-ups or in-line text?)
o Date pickers
o Toolbars
o Etc etc

And recommended ways of deciding which widgets to use.

Question: what can the Fluid project put together or recommend?

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

Integrating the user experience with the environment of the millennial
generation

We should explore ways of integrating the KS user experience with the connected
network of the millennial generation:

1. Facebook
2. Chat
3. Texting
4. gmail/hotmail/yahoo

Examples of integration:

1. Timetable to Facebook
2. Texting for items other than emergencies

Question: is this within the scope of the Fluid project?

Exposing Kuali Student in the campus portal

General considerations surrounding the question of exposing parts of KS in the campus
portal:

1. Portlets
2. Window states
3. Layout options:

o Customization
o Personalization

Question: is there a systematic way of approaching this?

Internationalization

Kuali Student is committed to internationalization in 2 senses:

1. Supporting the rules and processes of any educational jurisdiction
2. Supporting a multi-language user interface

Are there standard ways of supporting a multi-language user interface?

Visualization tools

Are there areas in Kuali Student where visualization tools would be helpful?

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

Visual stereotypes
Visual stereotypes cover typical screen layouts. Screens in this sense are visual
frameworks for managing a complex piece of work:

1. Registering in a course
2. Deciding on a degree program
3. Paying fees

The screen is a container for a variety of widgets (whose style and behaviour has
already been defined in the style sheets: see above). When a development team is
developing code for a business domain, the business analyst should be able to select
the stereotypes that are best suited for that business function. Here are some examples
of visual stereotypes:

1. The workbench stereotype
2. The wizard stereotype
3. The form stereotype

The workbench stereotype is similar to the Eclipse platform and consists of three areas:

1. An explorer
2. A workspace
3. A diagnostic area

The explorer gives the user a bird’s eye view of a domain. For example:

1. Subject areas in the curriculum domain (Anthropology, Biology, History etc etc)
2. Sessions/terms for academic records
3. Available queries for the search screen
4. Etc etc

The explorer can have tabs that allow different perspectives for the bird’s eye view (tree,
list, grid etc)

The workspace is where the actual interactive work happens. For example:

1. Adding courses to a timetable
2. Defining a new course
3. Updating grades for a class
4. Etc etc

Can members of the FLUID project work with KS (functional and technical folk) on
defining a set of stereotypes and building them with technologies that the FLUID
project has recommended?

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

The workbench stereotype

Diagnostics/messages

Explorer

Workspace

Diagnostics/messages

Explorer

Workspace

Introduction to Biology

This course will cover blah blah blah

Title:

Desc:

The form stereotype

Label
Label
Label
Label
Label
Label
Label
Label
Label
Label
Label
Label
Label
Label
Label

Label

The wizard stereotype

Label

Label

Label

Label

Next >

Label

Label

Label

Label

Next >< Previous

Label

Label

Label

Label

< Previous

Screen 1 of 3 Screen 2 of 3 Screen 3 of 3

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

Code templates for the visual stereotypes

The diagram below illustrates the MVC pattern.

The sequence of events is:

1. The Dispatcher receives a Request (eg “add a course”)
2. It is dispatched to the Controller
3. The Controller will execute any business associated with the request (eg

checking for available seats, checking the students pre-requisites etc etc)
4. The Controller gathers the information (Model) that needs to be returned

to the user.
5. The Model is mapped to a view which is then returned to the user

(Response)

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

In the SOA there are two respects in which the MVC is a little different.

2) The Controller (which acts as a bridge between a user request and business
functionality) will be interacting with one or more web-services (as opposed to
encapsulating the business logic directly or talking to an EJB).

3) The view template may be built dynamically by invoking services that return UI
components (labels, drop-down lists etc)

In the illustration below we see a Controller communicating with two web services. It
invokes Service A and Service B via StubA and StubB. The view resolver itself uses a
service (Service C) to get certain UI components such as labels and lists

Kuali Student and Fluid

Leo Fernig, September 20th, 2007

The MVC pattern can be implemented with a framework like Spring MVC. There are
still two problems that need to be solved by the UI stereotypes.

1) How do we integrate Ajax with an MVC implementation (and is that the right
approach, or is the MVC component now on the client?)

2) How do we aggregate UI components on the Portal?

Can KS use the expertise the FLUID project already has with Ajax and Spring
MVC, Spring Portlet MVC etc?

