Extreme Programming Practices Used to Facilitate Effective Project Management
Clement James Goebel I1II, PMP, Partner, Menlo Innovations
jgoebel@menloinnovations.com

Introduction
It is unfortunate that many software development professionals regard project management as formalized paper
pushing. It is even more unfortunate when a project manager focuses primarily on the scheduling of meetings, and
the creation or maintenance of artifacts instead of fostering high quality communications and coordination between
project stakeholders.

Extreme Programming codifies a set of practices that many software developers are willing to adopt in both action
and spirit. Many of these practices are grounded in fundamental project management theory. When software
development teams embrace the practices of Extreme Programming an opportunity is created for a broad set of
project management practices to become meaningful and accessible to the developers, while at the same time
making clear, unambiguous information available to the project managers.

This paper describes the practices of Extreme Programming from the viewpoint of project management. However,
it is important to acknowledge that Extreme Programming is not a comprehensive project management system, but
rather is a set of software development best practices that overlap nicely with best practices from the project
management domain.

Risk Management
Software development projects represent an investment of resources by the project’s sponsor, an investment that
often yields little or no return. The Standish Group’s Chaos Report 1994 states that fewer than 10% of software
projects in large companies were successful. Medium sized companies do better with 16% of their software projects
being successful, and small companies succeed on 28% of their software projects (Standish 1994). Given these
statistics it is worthwhile to invest significant effort in Risk Management for software projects. “Research at The
Standish Group also indicates that smaller time frames, with delivery of software components early and often, will
increase the success rate.” (Standish 1994)

Small Releases

Extreme Programming acts on the observation that smaller projects have a higher success rate. It decomposes all
software projects into multiple small releases where each release of the software contains only a subset of the
required functionality. These Small Releases are incremental production versions of the project’s expected final
deliverable providing limited subsets of functionality to the system’s users. Each release of additional functionality
offers stakeholders an opportunity to use the evolving capabilities of the software and provide high quality feedback,
thereby improving the quality of progressive elaboration.

The targeted time between releases is two to eight weeks, with a strong prejudice for the smallest possible time
period. While it can often be difficult to identify suitable functionality for early releases, the importance of early
releases cannot be overstated. Projects that use small incremental releases benefit from user feedback and well
understood project status, and they produce a return-on-investment before the project is fully completed.

Early releases that fail to produce business value provide an early warning sign of a project in trouble. Unlike
milestones such as Preliminary Design, whose completion will often simply be declared, these early releases require
demonstrable software product. Early releases that do not work provide important information, while there is still
budget and schedule to react to the detected problems. Another interesting scenario to consider is a project that is
cancelled halfway through due to constraints external to the project. In this case, a team that has produced several
incremental releases will potentially have delivered something that will return value to the organization despite
being cancelled before completion.

Other Extreme Programming practices also address risks common to software development projects. For example,
the risk associated with losing a key technical resource is greatly reduced by the practices of Collective Ownership,
and Pair Programming. While both of these practices apply to Risk Management, they are also key practices in
Human Resources Management and described later under that heading.

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 1 of 7



Integration Management
Extreme Programming offers nothing to help integrate the efforts of non-software developers. Unfortunately, some
advocates of Extreme Programming suggest that the efforts of technical writers, database managers, and quality
assurance specialist are not required. In reality, while Extreme Programming does not explicitly describe how to
integrate the work of others, the practices do not preclude the ability to integrate with other efforts. Small Releases
make Integration Management a more continuous process in contrast to processes that place deployment,
documentation, and testing at the end of the schedule.

Continuous Integration

At a more tactical level, the Extreme Programming practice of Continuous Integration requires that the work of
software developers be integrated on a daily basis. While this practice can cause additional overhead for individual
developers, it allows the team to identify problems daily that would otherwise become undiscovered rework
accumulating until all developers integrate their individual work products.

Scope Management & Time Management
Ask most software development teams for a copy of their project plan and you will receive an activity list formatted
as a Gantt chart. Many times these activity lists will describe several phases of activities such as Analysis, Design,
Construction, and Testing. Areas of functionality will be broken out under these headings in order to assign them to
specific programmers, but seldom are the assignments identified in the Gantt chart clearly traceable back to a
Requirements or other specification documents. All too often, the missing item that would help a team improve
their planning practices is a well-constructed Work Breakdown Structure. Extreme Programming focuses almost all
of its planning efforts on building a thoughtful Work Breakdown Structure and its constituent Work Packages.
Extreme Programming does not teach Work Breakdown Structures and Work Packages explicitly, however, careful
study of the Story Cards used in Extreme Programming reveals that they are almost identical to Work Packages in
their key attributes.

Properties of
Work Packages Story Cards
Are deliverable-oriented. Describe something of value to the user.
Usually contains no more than eighty hours | Need to be of a size that you can build a few
of effort to complete. of them every two weeks.

Are independent. Should be independent of each other.

Are testable. Can be tested.
Can be broken into activity lists. Are broken down into tasks.

Exhibit 1 (Project Management Institute 1998) (Beck 2001)

Planning Game

Extreme Programming teams capture Work Packages as hand-written descriptions of user functionality often written
on an index card. These index cards are called Story Cards to remind project participants that the contents of each
card should describe a story that a user might tell about functionality instead of the technical activities that software
developers instinctively describe. These Story Cards, or Work Packages, are used to facilitate estimates, build
schedules, authorize work, drive testing, and report status.

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 2 of 7



Wedding.com >> Summary Report

Create a report that lists the number of guests invited, the number of guests that have
RSVP’d in the affirmative, the number of guests that have RSVP’d regrets, and the number
of invitations that as yet have not RSVP’d.

Show the total budget for the wedding, the funds already spent, the funds required to pay
for items already ordered or booked, and the budget amount still remaining.

Also show the date the report was printed and the number of days until the wedding.

Exhibit 2 — Sample Story Card

Work authorizations are made every iteration, typically every two weeks. At the beginning of each iteration the
developers estimate each Story Card as a team. Any Story Card that is estimated to exceed the length of the
iteration is then decomposed into two or more new Story Cards that as a set represent the same functionality as the
original. These new Story Cards, or Work Packages, are then estimated.

Estimated stories are then grouped into releases of useful functionality that could add some measure of value to the
user, or at least help reduce the risk of the project. Each release is then broken down into two-week development
iterations, and stories are again assigned to the iterations using a business value perspective and the cost estimates
instead of a development efficiency strategy.

Once the remaining project schedule has been updated, the next two-week development iteration begins. The
developers discuss as a group how to break this iteration’s stories into simpler developer tasks, or activities. The
team members distribute the tasks amongst themselves and begin development. During the iteration all stories and
tasks that are completed are marked as such in a publicly viewable manner. Software developers are only allowed to
work on authorized stories, and are not allowed to go around the work authorization process to do a little extra work
now to make something easier later just because it is on the long-term schedule. If they want to change the
development strategy then story cards must be rewritten, re-estimated and rescheduled, effectively enforcing a
lightweight but process-oriented change control process. Development continues for exactly two weeks, then the
next planning cycle begins again even if all the work scheduled has not yet been completed.

Iteration One Iteration Two

Initiating Planning

Initiating Planning
Controlling ‘ Controlling

Exhibit 3 (Project Management Institute 2000)

Metrics are computed for each iteration. The metrics taught by Extreme Programming practitioners include
Velocity and Yesterday’s Weather. Both of these metrics are simplified versions of Schedule Performance Index,

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 3 of 7



and could easily be augmented with this standard measurement. Next, new story cards are written for any newly
discovered functionality, and existing cards might be rewritten to reflect an improved understanding of the
desired/required scope. The continual updating of story cards as the team’s knowledge improves is a process
acknowledgement of the progressive elaboration that affects all nontrivial projects. All new stories are estimated,
and any stories that have not been completed (including those not started) have their estimates updated. Release
plans and iteration plans are adjusted if necessary. However, instead of slipping delivery dates, Extreme
Programming favors floating scope in order to release partial functionality.

The activities for each iteration follow the expected pattern of process flows as described within the Project
Management Body Of Knowledge, as seen in Exhibit 3. In between the execution phases of the two iterations there
is no code being written and all private code branches have been merged. Each iteration is run like its own small
project in order to reduce any risk associated with unintegrated work product.

Human Resources Management
Often one of the most challenging aspects of project management is managing human resources. For software
development projects in particular this includes the complex juggling of technical tasks between individual software
developers who have different individual skills, effectively treating each developer’s assigned tasks as an
independent subproject. This type of project plan often suffers from key resource bottlenecks and status meetings
reduced to determining which individuals are falling furthest behind. Extreme Programming addresses this head-on
by eliminating the dependency on individual developers. Work Packages are scheduled and authorized based on the
needs of the business and the users not the needs of the software developers. All developers are cross-trained to
work in all areas of the code base. Developers broaden their skills, and project managers stop worrying about
keeping individual software developers for the entire duration of the project. The process maintains knowledge of
the full code base in the team, not in individuals.

Collective Ownership

When nobody owns the code being written, anarchy results as multiple individuals modify any and all code to suit
their own needs. The “obvious” correction to this problem is to assign distinct sections of code to individual
developers. Unfortunately this creates new problems. First of all the team quickly begins to require that all
scheduling be done on a developer by developer basis, effectively working to keep developers busy instead of
assembling useful subsets of functionality. The second challenge in individual ownership is that everyone knows
what work they will be assigned. This causes odd dynamics in design discussions as developers subconsciously, or
consciously, move complexity from one subsystem to another based on where they will be assigned to work.

Extreme Programming uses a model of Collective Ownership; the code is still owned but collectively. Anybody on
the team who sees something that should be fixed in the code is required to attend to the task immediately.
Collective ownership is very important to keeping the scheduling process focused on value delivered instead of
resource availability. It also provides individual developers with the opportunity to grow in areas where their skills
are weak. Collective ownership can be a difficult culture to build, and that is why Extreme Programming has a
strong set of practices to reinforce good communications and teamwork. However, collective ownership of the code
clearly wins out over other models when a developer leaves the team unexpectedly.

Sustainable Effort

Within teams that use Extreme Programming it is recognized that from time to time extra effort will be required to
complete releases and other important milestones. However, the practice of Sustainable Effort is an important
acknowledgement that teams regularly burning the midnight oil time and time again simply reduce their overall
effectiveness beyond any gains made by working longer hours. Not only does productivity fall, but extended
periods of extra effort can negatively affect team morale. Therefore, Extreme Programming teams avoid
extraordinary efforts in any two consecutive iterations. Instead the scope should be reduced to ensure that quality
does not suffer.

Quality Management
As programmers move from work authorization to work authorization, and often from one area of the code to
another, it is easy to see that maintaining quality in the work product could be challenging. Extreme Programming
requires a very disciplined design approach to allow freedom in assigning resources while maintaining high quality.

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 4 of 7



Simple Design & Refactoring

The first practice that supports quality workmanship is a focus on simple design. Instead of trying to make all code
modules very flexible in anticipation of future requirements, Extreme Programming focuses on building reliable and
simple code to satisfy the requirements of the work packages that have already been authorized. As new features are
added, or stories are authorized, the design is reworked and modified to accommodate the most recently scheduled
features. This reworking of the design is done one step at a time, or what Extreme Programmers call Refactoring.
After each incremental step of refactoring is completed, the entire application is run through quality control. For
example, one incremental refactoring would be renaming a single method or function. After renaming the function
the developers validate that the quality control tests for the entire application pass successfully before moving
forward with the next incremental refactoring. There will typically be hundreds or thousands of these quality
control tests to run, which leads to the need to automate those quality control tests.

Testing

In order to satisfy the requirement for 100% of all quality control tests to pass after each incremental coding step, the
need for those tests to run in an automated test harness becomes a necessity. Each and every public method or
function must have a functional specification captured in the form of an automated test suite. These automated unit
tests are considered to be such an important part of the design process, they are required to be written before the
code they are intended to test is written. The power of these low level specifications expressed in executable code is
that the computer can be used to verify conformance. It would not be unusual for a member of an Extreme
Programming team to run the entire suite of all unit tests dozens of times per hour. The safety net of this executable
specification further enhances the team’s ability to shift resources from one part of the application to another and
enhances their ability to perform collective code ownership.

Pair Programming

The rigor of simple design and 100% test coverage can be difficult to adopt and to maintain. There is also a
significant amount of learning that must occur when all programmers are expected to be familiar with all of the
code. Extreme Programming offers an unparalleled support network for all of the developers on the team.
Whenever production code is being written there must be two developers sitting at a single keyboard and monitor.
Having two programmers working together when coding offers several advantages. It reinforces collective
ownership in a manner that code reviews by your peers will likely never achieve. Both partners typically learn from
each other, and this reinforces team spirit. Likewise each partner feels a need to not let their partner down, so extra
effort is often focused on following all of the practices as adopted by the team (DeGraff 2002, 120). Compare this
dynamic to typical situations where testing and quality practices are often sacrificed in the later stages of a project in
order to maintain schedule.

Pair programming also facilitates communications within the team. Partners change throughout the day; this can
provide a fresh perspective and keeps information traveling throughout the team. Developers working an Extreme
Programming team typically report a newfound understanding of the overall project as well as a deeper
understanding of their teammates’ points of view. The effect of this improved alignment in understanding cannot be
understated in regards to the impact on quality.

Communications Management
When a project manager mentions the need for improved communications on a project, software developers often
immediately envision an increased number of meetings and documents. While formal meetings and written
documents have their place in a communication plan there are many other tools for facilitation of communication
between project participants. The Extreme Programming practices include several simple practices intended to
enhance communications.

Standup Meeting

Ironically, Extreme Programming does away with the weekly status reports and weekly status meetings in part by
having a status meeting every day. This meeting uses techniques that everyone has heard of and joked about, but
seldom have actually tried to implement. For this daily meeting everyone stands up in a circle, hence the name
Standup Meeting. Each person speaks in turn and is seldom interrupted. Each party announces which Story Card
they are currently working on and then describes any problem that they are having for which they might need a fresh

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 5 of 7



perspective. If someone else has an answer they simply state that they can help and the required parties discuss the
problem after the standup meeting has been completed. Some teams reinforce the process of discouraging speaking
out of turn by passing around a speaking token, such as a book or other more creative objects such as a ten pound
weight. Most of these meetings are completed in less than fifteen minutes.

Common Workspace

The amount of time that teams expend assembling for meetings can drain untold hours by the end of a significant
project. Extreme Programming’s Standup Meeting could exacerbate this problem, however, the practice of all
project participants working in a Common Workspace makes assembling for the Standup Meeting as simple as
standing up and forming a circle. Because being in the same room makes it easy to meet with others on the project
many problems that would normally initiate an email exchange or the scheduling of a meeting are solved by
developers simply pushing their chairs together for a few minutes or asking questions of each other without even
moving their chairs.

Onsite Customer

Not only do the software developers work in the Common Workspace but the Extreme Programming practices
recognize the need for someone who can answer the software developer’s questions. In the ideal world described by
the initial texts on Extreme Programming, this would be a representative of the user community also known as the
Onsite Customer. Updated interpretations of this practice might replace the sample user of the system with someone
who is charged with representing the needs of the users in selecting the priority of the work packages and answering
developer questions. However, the key requirement to this practice is that the developers need easy access to
someone who is capable and willing to make decisions when questions arise. Answers from the Onsite Customer
that change scope significantly must be written as new Story Cards, estimated and then scheduled, thereby
maintaining the scope management process.

Metaphor

One final communication practice that helps to facilitate communications between the developers and the Onsite
Customer is the Metaphor. The Metaphor practice is probably one of the most difficult practices to master in
Extreme Programming. It requires the high-level system design to be done using a metaphorical model that will be
reflected in the code and be understood by the Onsite Customer. By modeling the overall system architecture on
another commonly understood process, or objects that can be explored in the real world, discussions between
software developers are more likely to be somewhat accessible to the Onsite Customer.

Why is Extreme Programming Different
Extreme Programming accepts that humans are fallible and builds a process that not only accepts progressive
elaboration, but makes this reality a central theme to all of its other practices. There is also the recognition that
following the proscribed practices in the real world everyday can be very challenging. To overcome this difficulty
the practices interlock and compliment each other.

Limitations to Extreme Programming
Not all projects would be well served to adopt Extreme Programming. But while the practices build on each other
and are more powerful when assembled in the whole, the set of practices were assembled based upon their historical
use within successful projects. Therefore, there is value in understanding the individual practices and how they
might have a successful impact on projects that do not fully adopt Extreme Programming.

In some teams the partial adoption of the Extreme Programming practices have been used as an excuse to stop doing
project management. Software developers self-selecting the practices of interest does not eliminate the need for
project management. Nor does the full adoption of the practices and the culture eliminate the need for project
management, instead the full adoption of the practices puts in place a core set of project management pieces that will
inform a project manager and help them to steer a project to success.

My Experiences
As a certified Project Management Professional my view on these practices are somewhat different than those of the
typical software developer. However, the thoughts expressed here are more than an academic opinion about
practices that I have studied. I have personally worked with teams from over a dozen organizations that have

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 6 of 7



adopted some portion of these practices. These organizations range from small product firms, to governmental, to
large global companies. In each case the improved ability to estimate projects, track progress, and to build software
that provides value to the end users have been surprising given the low tech tools used to facilitate high quality
project management. (Baer 2003, 125) Successful process change always requires some cultural change as well, and
failure to recognize this fact is where many change efforts fail. The practices of Common Workspace and Pair
Programming reinforce new social norms within the team in a way that dramatically increases the likelihood of
successful change adoption.

Conclusions
Within the community of software development professionals there is a growing movement of experienced
practitioners leading a revolt against weekly status meetings, comprehensive specification documents, code reviews,
and Gantt charts. When first introduced to these ideas it can be easy to dismiss such advocacy as the promotion of
chaos that would leave software developers free to pursue their own goals without accountability to the business.
Indeed, such chaos is a very likely outcome of removing management constraints from a software development
team. But what would happen if you could implement key project management practices in such a way that
software developers were left feeling freed from the tyranny of paper pushing and meetings, while at the same time
you improved scope control, task estimation, project status reporting, quality control, and team morale?

Imagine an environment where software developers openly collaborate with other members of the team to solve
problems quickly and effectively, produce results in a predictable manner, and embrace project management.

Extreme Programming is socially acceptable to many software development teams, while providing practices
grounded in fundamental project management theory.

References
Baer, M. (2003) The New X-Men. Wired, (November), 125-129.
Beck K. (2001) Planning Extreme Programming. Addison-Wesley:Upper Saddle River.
DeGraff, J. & Lawrence, K. A. (2002) Creativity at Work. Jossey-Bass:San Francisco.

Project Management Institute. (2000) 4 guide to the project management body of knowledge (PMBOK®) (2000 ed.).
Newtown Square, PA: Project Management Institute.

Project Management Institute. (1998) PMBOK Q&A. Newtown Square, PA: Project Management Institute.

Standish Group (1994) The CHAOS Report 1994.
http://www.standishgroup.com/sample research/chaos 1994 1.php.

Clement James Goebel III, PMP © Menlo Institute LLC, 2003 Page 7 of 7



