
Writing Fearless Javascript
for portlets, widgets, and portals...

Fearless Javascript

Colin Clark
Fluid Project Technical Lead, Adaptive Technology Resource
Centre, University of Toronto

Eli Cochran
user experience developer
University of California, Berkeley

Antranig Basman
CARET, Cambridge University

http://fluidproject.org

Douglas Crockford, senior JavaScript Architect at Yahoo!, Best known as one of the developers
of JSON
John Resig, JavaScript Evangelist for the Mozilla Corporation, creator of jQuery, author of Pro
Javascript Techniques

jQuery

The jQuery Javascript Library. We love jQuery and JS toolkits in general. Please don’t be
turned off by our focus on jQuery. There are a lot of great JS Toolkits and libraries out there
and the techniques we discuss today are applicable across toolkits.

In-class examples...

The jQuery Javascript Library. We love jQuery and JS toolkits in general. Please don’t be
turned off by our focus on jQuery. There are a lot of great JS Toolkits and libraries out there
and the techniques we discuss today are applicable across toolkits.

svn co https://source.fluidproject.org/
svn/sandbox/javascript-workshop/trunk

• Debugger

• Profiling tool

• DOM inspector

• Interactive console

• Every JS programmer's best friend!

Download it at: http://www.getfirebug.com/

Firebug

The jQuery Javascript Library. We love jQuery and JS toolkits in general. Please don’t be
turned off by our focus on jQuery. There are a lot of great JS Toolkits and libraries out there
and the techniques we discuss today are applicable across toolkits.

http://www.getfirebug.com/
http://www.getfirebug.com/

1. In Firefox 2, go to
 http://www.getfirebug.com/

2. Click the big Install Firebug 1.0 button

3. Restart Firefox after installing

4. Enable Firebug by clicking the green
checkmark

5. Select the Console tab

6. Choose Options > Larger Command Line

Setting Up FireBug

The jQuery Javascript Library. We love jQuery and JS toolkits in general. Please don’t be
turned off by our focus on jQuery. There are a lot of great JS Toolkits and libraries out there
and the techniques we discuss today are applicable across toolkits.

http://www.getfirebug.com/
http://www.getfirebug.com/
http://www.getfirebug.com/
http://www.getfirebug.com/

Ridiculous question?
After all this is a Web 2.0 world, everywhere we turn, it's AJAX this, DHTML that, social
networks, but it is a reasonable question

Why Javascript?

Ridiculous question?
After all this is a Web 2.0 world, everywhere we turn, it's AJAX this, DHTML that, social
networks, but it is a reasonable question

Why Javascript?

Why DHTML?

Ridiculous question?
After all this is a Web 2.0 world, everywhere we turn, it's AJAX this, DHTML that, social
networks, but it is a reasonable question

Why Javascript?

Why DHTML?

Why AJAX?

Ridiculous question?
After all this is a Web 2.0 world, everywhere we turn, it's AJAX this, DHTML that, social
networks, but it is a reasonable question

Why Javascript?

Why DHTML?

Why AJAX?

Why bother?

Ridiculous question?
After all this is a Web 2.0 world, everywhere we turn, it's AJAX this, DHTML that, social
networks, but it is a reasonable question

Web 2.0
aka. Web 3.0 alpha

DHTML = Dynamic HTML

AJAX = Asynchronous Javascript and
XML

RIA = Rich Internet Applications

Definitions

DHTML = Dynamic HTML = client-side interactivity
AJAX = Asynchronous Javascript and XML = small, responsive, transactions between client
and server
the XML part of AJAX is used very rarely these days, being replaced by other data formats, such as JSON
RIA = Rich Internet Applications = rich interactions

Examples

Flash?
Silverlight?

•
 Great technologies

 •
 powerful

 •
 fast

 •
 cross-platform (well, at least Flash has so far proven to be so)

 •
 Great for animation and media, I mean really great!

 •
 for some functionality Flash is better, at least for now, such as animation.
I've seen some awesome things done with DHTML based animations, especially using some of the new
technologies that are being adopted such as Canvas and SVG, but for now Flash is much easier to author and has
better results. But we're not talking about animation or video here, we're talking web apps, data, information,
funcitonality and DHTML and AJAX can do anything that Flash and Flex, and Silverlight can do.

• Political

• Open vs. Closed

• Practical

• Also Open vs. Closed

Jump out to Fluid Layout Customizer in uPortal

• open-standards

• transparent

• works within a web page, not against it

• accessible

DHTML/AJAX

not just to screen readers and adaptive devices but to other components and other
technologies, HTML and DOM are the currency of the web, components built using DOM can
talk to each other in DOM, the HTML document object model becomes the API that allows us
to build along side and on top of each other.

Javascript
• breezy little scripting language?

• industrial-strength programming
language?

• both?

• Namespace pollution

• Obtrusive scripting: placing code and event
handlers into markup

• Attempts to map a class-based system onto a class-
less language

• Poor encapsulation: data and functions scattered
about

Old-school JS

var currentTab = "";

var currentHighlight = "";

function showTab(tabKey) {

// show tab stuff

}

function hideTab(tabKey) {

// hide tab stuff

}

function init(tabSet) {

// init block

}

Javascript 101

• Everything is an object

• Extremely loose type system

• No classes

• Functions are first class

• Lots of annoying quirks

JavaScript is Different

• Written at Netscape by Brendan Eich

• Original goal: kinda like LISP, but without
all the brackets

• Rushed to market, bugs and all

• Microsoft reverse-engineered it

• ECMA was a browser war battleground

Fun History

• Variables

• Numbers

• Strings

• null

• undefined

• Objects and Arrays

Part 1: The Basics

• Define variables with var
• No need to declare types

 var mango = "yum";

 mango = 12345;

 mango = false;

Defining Variables

• If you omit var, it will be defined as a global variable.
Bug!

• Accident prone; JavaScript won't warn you!

 rottenTomato = "gross!"; // This is global

Defining Variables

• Numbers

• lots of precision

• no distinction between floats and ints

• NaN !== NaN

• Strings

• Nearly Unicode

• Immutable

• No character type

Numbers and Strings

• null is the "nothing" value

• undefined is extremely nothing

• Default parameter for defined variables

• Also the value of undefined or missing
members of objects

Null vs. Undefined

Null vs. Undefined
think of undefined as "I've never heard
of this thing"
and null as "nothing here"

Null vs. Undefined

var foo;
foo === undefined

console.debug(someRandomVariable); // undefined

Truthy and Falsey
• JavaScript does a lot of automatic type

coercion

• This is scary, but helpful

• Shades of true and false

• Helpful when evaluating arguments

Falsey Values
• false

• null

• undefined

• ""

• 0 (zero)

• NaN

Truthy Values
Everything else is truthy...

• true

• Objects
• Non-zero numbers
• Non-empty Strings
Careful...

 -1,"false","0" are all true

Type Coercion
JavaScript does automatic type coercion in several
scenarios

• This can be very dangerous!

• The + operator, for example:

 1 + 2 === 3

 "$" + 1 + 2 === "$12" not $3

 +"12" === 12 // Implicit coercion

Equal vs. Equivalent
Comparisons are coercive:

 1 == "1" // true

 0 == false // true

Non-coercive comparison:

 0 === false // false

 1 !== "1" // true

Using Truthy and Falsey
• Checking for valid arguments before

operating on them

• Substituting defaults

• Be careful with arguments that genuinely
might be falsey, such as numbers

Truthy/Falsey Example
function pie (apples, cinnamon) {

// Only cut the apples if they aren't null or undefined.
if (apples) {

alert("Apples!");
//apples.cut();

}

var nutmeg = "nutmeg";

// If cinnamon is falsey (null or undefined),
// assign spice to nutmeg instead
var spice = cinnamon || nutmeg;

if (apples && spice) {
 return "Tasty";

} else {
 return "Crusty pie";

}
}

pie(null, null); // "Crusty pie"

Creating Objects
// Using the new keyword
var foo = new String("foo");
var answer = new Number(42);
var fiveThings = new Array(5);

// Using object literal notation
var myObject = {};

// Literals are more succinct
var foo = "foo";
var answer = 42;
var fiveThings = [1, 2, 3, 4, 5];
var basketOfFruit = {

mangosteens: 5,
kiwis: false,
figs: "plenty"

};

• At their core, objects are just maps

• new Object() or {} returns an empty container of key/
value pairs

• Keys can be any string, values can be anything

• Two different ways to access members:

basketOfFruit.kiwis; // dot notation

basketOfFruit["figs"]; // subscript notation

• You can add new members to any object at any time

Objects Are Loose
Containers

Objects Are Modifiable
var basketOfFruit = {};

// New property

basketOfFruit.apples = "macintosh";

// New method

basketOfFruit.eat = function () {

 return “tasty”;

}

No Classes
• JavaScript doesn't have any concept of

classes

• Methods are just properties in a container:

• pass them around

• modify them

• delete them

No Classes
Duck typing:

If it walks like a duck and quacks like a duck,
it's a duck.

• Functions are first class

• Ways to call a function

• Determining types

• Prototypal Inheritance

• Understanding this

• Closures

Part 2: Functions & Scope

• Functions are data

• You can assign them

• You can pass them as arguments

• You can return them as results

• Functions can contain member variables

First Class Functions

Defining and Using Functions
var juicePuree = function (aFruit) {

 return puree(aFruit);

};

function squeezeJuice(aFruit) {

 return squeeze(aFruit);

}

function popsicle(juiceMakerFn, fruit) {

 var juice = juiceMakerFn(fruit);

 freeze(juice);

}

What Does This Mean?
• No more anonymous inner classes!

• You can pass bits of logic around and
have them be invoked later

• Callbacks are easy to write and ubiquitous

Ways to Call a Function
// Plain old function call

popsicle(arguments);

// Calling a method on an object

var meal = {appetizer: "kiwi", dessert: function popsicle() { ..}};

meal.dessert(arguments);

meal["dessert"](arguments);

// Tricky context substition

var dessert = meal.dessert;

dessert.apply(thisObject, [arg1, arg2]);

dessert.call(thisObject, arg1, arg2);

// As a constructor...

Constructor Functions
• No classes in JavaScript, so how do we define

new objects?

• Instantiate a function using the new keyword

• Any function can be used as a constructor

• Conventional to use CamelCaseLikeThis.

Constructor Functions
function Apple(type, colour) {

this.type = type;

this.colour = colour;

};

var macintosh = new Apple("macintosh", "red");

.constructor

• All objects have a .constructor property

• It points to the function that created the
instance

 var macintosh = new Apple("macintosh", "red");
 macintosh.constructor === Apple

 var plainOldObject = {foo: "foo"};
 plainOldObject.contructor === Object

Determining Types
• JavaScript has a typeof keyword for

determining type

 var plum = "yum";

 if (typeof plum === "string") {

 alert("Plum is a String!");

 }

Typeof is Innacurate
// Inaccurate results for some built-in types

typeof(new Object()) // 'object'

typeof(new Array()) // 'object'

typeof(new Function()) // 'function'

typeof(new String()) // 'string'

typeof(new Number()) // 'number'

typeof(Boolean()) // 'boolean'

typeof(null) // 'object'

typeof(undefined) // 'undefined'

Typeof is broken
// typeof is useless for custom types
function Apple(type, colour) {};
typeof(new Apple()) // 'object'

Better Ways to Check Types
function DragonFruit() {};

// Check the .constructor property
var myFruit = new DragonFruit();
myFruit.constructor === DragonFruit;

// Use instanceof
(myFruit instanceof DragonFruit)

Prototypal Inheritance
• Did I mention that JavaScript doesn't have

classes?

• Inheritance is based on prototypes:

"Give me an object that is like that one over
there."

• Constructor functions have a .prototype property

• It points to an object that provides base
functionality

Setting Prototypes
var Animal = function() {

 this.sound = "growl";

 this.species = "mammal";

};

var Cat = function(colour) {

 this.colour = colour;

 this.sound = "meow";

};

Cat.prototype = new Animal();

var felix = new Cat(black);

felix.sound === "meow"; // Resolved directly at Cat.

felix.species === "mammal"; // Resolved at Cat.prototype.species

// Felix now has a species property, and the value defined by Animal will be ignored.

felix.species = "insect";

Dynamically Modifying Types
Cat.prototype.claws = function () {

 return "Ouch!";

}

var garfield = new Cat();

garfield.claws(); // "Ouch!"

// Felix is automatically updated with the claws function.

felix.claws(); // Also "Ouch!"

Don't Extend Built-in Types

• Dynamic objects are awesome. But dangerous.

• Looseness allows us to change contracts for
everyone

• Different scripts share the same browser window

• They all share the basic types

• Modifying built-in functionality will break things

Breaking Built-in Types
Object.prototype.keys = function () {
 var keys = [];
 for (prop in this) {
 keys.push(prop);
 }
 return keys;
}

var myKeys = {foo: "foo", bar: "bar"}.keys();
console.debug(myKeys); // [foo, bar, keys];

this

Context and this

• JavaScript this pointer seems wild and
unpredictable

• It points to different objects depending
on the context

• Subtle, confusing, and powerful

Global this

• In the global space, this points to the
Global object

• In a browser, this === window

this.pie = "apple";

pie === "apple";

window.pie === "apple";

Function Scope this

function bake(aPie) {

 this.pie = aPie;

};

bake("cherry");

pie === "cherry"

window.pie === "cherry"

Object Instances
• The new keyword instantiates a new

object

• this pointer is automatically assigned to
the new instance

Object this
function Pie(fruit, flour) {

 this.fruit = fruit;

 this.bottomCrust = flour;

 this.topping = "chocolate";

};

Pie.prototype.showMeThis = function () {

 return this;

}

var applePie = new Pie("apple", "wholeWheat");

applePie.showMeThis() === applePie;

Constructors are Just Functions

Pie("cherry", "flax");
window.fruit === "cherry";
window.bottomCrust === "flax";
window.topping === "chocolate";

Borrowing Functions and this
var applePie = new Pie("apple", "wholeWheat");
var showPie = applePie.showMeThis;

// Note the lack of brackets.

// We've detached the method from its context
// so 'this' reverts back to the Global object
showPie() === window;

Substituting Contexts
var cake = new Cake("peach", "chocolate");
var showPie = applePie.showMeThis;

var cakePie = showPie.call(cake, null);
cakePie === cake;

No Block Scope
// Blocks don't have scope in JavaScript

var fruits = ["apples", "oranges", "lemons"];

for (var i = 0; i < fruits.length; i++) {

 var currentFruit = fruits[i];

}

// The incrementor and currentFruit variables
are still in scope!

i === 3;

currentFruit === "lemons";

Functions Have Scope
function cherryPicker(cherryTree) {

 function picker(branch) {

 var cherries = branch.pickCherries();

 cherries.wash();

 return cherries;

 }

 var basketOfCherries = [];

 for (branch in cherryTree) {

 var someCherries = picker(branch);

 basketOfCherries.push(someCherries);

 }

 return basketOfCherries;

}

var cherries = cherryPicker(hugeTree);

picker === undefined;

Closures
• You can define a function inside another

function

• Inner functions have access to the outer
function's variables

• A closure is formed by returning the inner
function from the outer function

• The inner function will still have access to all
the variables from the outer function

A Simple Closure
function addNumbers (a, b) {

 function addEmUp (c) {

 return a + b + c;

 }

 return addEmUp;

}

var add = addNumbers(1, 2); // add is a Function

add(3); // Result is 6.

Closures Simplify Event Handlers
function showMessage(messageToDisplay) {

 var todaysPie = "Banana creme pie";

 return function(event) {

 alert(messageToDisplay + " " + todaysPie);

 showPictureOfPie(event.target, todaysPie);

 }

}

var clickHandler = showMessage("Welcome to my pie shop. Today's pie
is:")

$(element).click(clickHandler);

$(element).click() // Shows an alert that reads "Welcome to my pie
shop. Today's pie is: Banana creme pie"

How Is This Possible?
• Each invocation of a function runs in its own execution context

• The execution context holds helpful information:

• arguments to the function call

• a scope chain, which stores variable declarations

• the this pointer

• Identifiers are resolved against the context's scope chain

• This means that inner scopes can access variables in the outer
scope

function()

• event

Variables[]

• messageToDisplay

• todaysPie

Global

• messageClickHandler

Variables[]

showMessage()

Variables[]

Javascript Toolkits

what’s the problem?

Javascript is tricky?

No

Javascript is easy

What is hard?

Example: Events

Example: Events

Microsoft Internet Explorer

= element.attachEvent('onclick',doSomething);

W3C Way (everyone else)

= element.addEventListener('click',doSomething,false);

Example: Events

if (myBtn.addEventListener) {

 myBtn.addEventListener('click',doSomething(),false);

} else {

 myBtn.attachEvent('onclick',doSomething());

}

Example: Events

function addEvent(element, type, handler) {

 if (element.addEventListener) {

 element.addEventListener(type, handler, false);

 } else {

element.attachEvent('on'+type, handler);

 }

}

Example: Events

function addEvent(element, type, handler) {
 if (element.addEventListener) {
 element.addEventListener(type, handler, false);
 } else {
 // assign each event handler a unique ID
 if (!handler.$$guid) handler.$$guid = addEvent.guid++;
 // create a hash table of event types for the element
 if (!element.events) element.events = {};
 // create a hash table of event handlers for each element/event pair
 var handlers = element.events[type];
 if (!handlers) {
 handlers = element.events[type] = {};
 // store the existing event handler (if there is one)
 if (element["on" + type]) handlers[0] = element["on" + type];
 }
 // store the event handler in the hash table
 handlers[handler.$$guid] = handler;
 // assign a global event handler to do all the work
 element["on" + type] = handleEvent;
 }
}
// a counter used to create unique IDs
addEvent.guid = 1;

function removeEvent(element, type, handler) {
 if (element.removeEventListener) {
 element.removeEventListener(type, handler, false);
 } else {
 // delete the event handler from the hash table
 if (element.events && element.events[type]) {
 delete element.events[type][handler.$$guid];
 }
 }
}

function handleEvent(event) {
 var returnValue = true;
 // grab the event object (IE uses a global event object)
 event = event || fixEvent(((this.ownerDocument || this.document || this).parentWindow || window).event);
 // get a reference to the hash table of event handlers
 var handlers = this.events[event.type];
 // execute each event handler
 for (var i in handlers) {
 this.$$handleEvent = handlers[i];
 if (this.$$handleEvent(event) === false) {
 returnValue = false;
 }
 }
 return returnValue;
}

function fixEvent(event) {
 // add W3C standard event methods
 event.preventDefault = fixEvent.preventDefault;
 event.stopPropagation = fixEvent.stopPropagation;
 return event;
}

fixEvent.preventDefault = function() {
 this.returnValue = false;
};

fixEvent.stopPropagation = function() {
 this.cancelBubble = true;
};

Example: Events

browser differences...
too many to list...

QuirksMode
www.quirksmode.org

Example: DOM Selection

Example: DOM Selection

visual representation of the
DOM for http://uPortal.org

http://uPortal.org
http://uPortal.org

Example: DOM Selection

Example: DOM Selection

find something and do something with it

Example: DOM Selection

var elm = document.getElementById('myButton');

var elms = document.getElementsByTagName('tr');

Example: DOM Selection

var myItems =
document.getElementById("myList")
.getElementsByTagName("li");

Example: DOM Selection

Example: DOM Selection

by id

by class

by parent

by child

by sibling

by attribute

by function

Example: DOM Selection
by a combination of any and all of these

What is hard?

What is hard?
• browser inconsistencies and bugs

What is hard?
• browser inconsistencies and bugs

• Browser Abstraction

What is hard?

What is hard?
• complex data and user interfaces in web

applications

What is hard?
• complex data and user interfaces in web

applications

• DOM traversal, selection, and
manipulation

What is hard?

What is hard?
• subtle and varied high-quality user

interactions

What is hard?
• subtle and varied high-quality user

interactions

• event binding must be easy and
dynamic

What is hard?

What is hard?
• the call and response of asynchronous

client-server interaction

What is hard?
• the call and response of asynchronous

client-server interaction

• quick, responsive, bullet-proof
AJAX functionality

foundational toolkits

enabling and enhancing

leveraging someone
else's pain

thousands of toolkits?

thousands of toolkits?

• single problem solutions

thousands of toolkits?

• single problem solutions
• widgets

• Cross-browser support

• Easy debugging

• Event abstraction

• A solid DOM manipulation library

• A strong community and clear roadmap for
improvements

• Accessibility

The Fluid Criteria

Leading Toolkits
• Prototype / script.aculo.us

• Dōjō / dijit

• YUI

• GWT

• MooTools

• MochiKit

• jQuery

do more or less the same things, but they do them in very different ways
what I mean from by a philosophy is that the toolkits reflect the linguistic-bias of the people
who wrote them
prototype feels like Ruby
Dojo attempts to bring to Javascript the classical inheritance of Java
in GWT you actually write Java which then is compiled into Javascript ... did half the room just
wake up?

Why use jQuery?

•
 The Fluid project had done extensive work in Dojo before settling on jQuery.
•
 We had high hopes for Dojo because it was the first library to really embrace
accessibility... and we're all about accessibility on Fluid
•
 But we ran into issues with Dojo and their widget library Dijit which made it difficult to
move forward...

 •
 So after a frantic week of rewriting one of our components in a handful toolkits we
settled on...

•
 The Fluid project had done extensive work in Dojo before settling on jQuery.
•
 We had high hopes for Dojo because it was the first library to really embrace
accessibility... and we're all about accessibility on Fluid
•
 But we ran into issues with Dojo and their widget library Dijit which made it difficult to
move forward...

 •
 So after a frantic week of rewriting one of our components in a handful toolkits we
settled on...

jQuery

jQuery was built with the skills of Web developers in mind. It doesn't try to be another
language, it attempts to support and advance the inherent strengths of Javascript,
prototypical inheritance, functions as first-class objects, and it's strengths are in how easy it
is to find and work with the DOM - the HTML, the stuff of web sites and web applications

jQuery

Write Less, Do More

jQuery was built with the skills of Web developers in mind. It doesn't try to be another
language, it attempts to support and advance the inherent strengths of Javascript,
prototypical inheritance, functions as first-class objects, and it's strengths are in how easy it
is to find and work with the DOM - the HTML, the stuff of web sites and web applications

jQuery

jQuery
• DOM selection and manipulation

• using CSS selectors

• Event management

• Effects and Animation

jQuery
• DOM selection and manipulation

• using CSS selectors

• Event management

• Effects and Animation

• AJAX

jQuery
• DOM selection and manipulation

• using CSS selectors

• Event management

• Effects and Animation

• AJAX

• jQuery UI

finding something without jQuery

var myItems =
document.getElementById("myList")
.getElementsByTagName("li");

finding something with jQuery

var myItems = jQuery('#myList li');

finding something with jQuery

jQuery('#myList li.highlighted');

jQuery('table.foo tbody tr:even');

jQuery('div > p');

jump out to 1st example

doing something
function stripeListElements(listID) {

 // get the items from the list

 var myItems =

 document.getElementById(listID).getElementsByTagName("li");

 // skip line 0 as it's the header row

 for(count = 0; count < myItems.length; count++) {

 if ((count % 2) === 0) {

 myItems[count].className = "odd";

 }

 }

 }

doing something with jQuery

function stripeListElements(listId) {

jQuery('#' + listId + " li:even").addClass("odd");

}

zero-based foo

doing something with jQuery

function stripeListElements(listId) {

 jQuery('#' + listId + " li:even").addClass("odd");

}

zero-based foo

Learning jQuery

online documentation

jQuery.com

The basics

Finding stuff in the DOM

jQuery(‘selector’)

selectors can be

• tags: jQuery('tr')

• ids: jQuery('#myId")

• classes: jQuery(".myClass")

• and various combinations there of

Doing something with it
$('.some-hidden-thing').show();

$('.some-hidden-thing').fadeIn('slow');

$('A new list item').appendTo('#myList');

$('#myList li:last').replaceWith('A new list item');

$('div.container').clone().appendTo(‘body’);

Attaching Events
$('.button').click(function(){
 doSomething();
});

$('.button').hover(function(){
 jQuery(this).addClass('hilite');
}, function(){
 jQuery(this).removeClass('hilite');
});

$('.button').focus(function(){
 jQuery(this).addClass('hilite');
});

$('.button').blur(function(){
 jQuery(this).addClass('hilite');
});

Attaching Events : chaining
$('.button').addClass('buttonClass);

$('.button').click(doSomething()});

Attaching Events : chaining

$('.button').addClass('buttonClass).click(doSomething());

One Special Event
$(document).ready();

$(document).ready(
jQuery('#aList li:even").addClass("odd");

);

• Google (in Google Code)
• Bank of America
• Source Forge
• Sakai
• Drupal
• BBC
• Dell
• Slashdot
• Engadget

jQuery

How to Build a
Portal-Friendly UI

Portals Are Hard
• Multiple instances: namespacing is

essential

• Lots of different JavaScript code running

• High chance of collisions

• Can't expect control of the document

Writing Portal-Friendly
JavaScript
• Put code in a unique namespace

• Use closures for privacy

• Be unobtrusive

• Support multiple instantiation

• Constrain selectors to a specific fragment

Start With a Unique
Namespace

// Add on to the fluid object if it
exists
// otherwise initialize it as an empty
object.

var fluid = fluid || {}

Use Closures for Privacy

(function() {
 function myPrivateFunction () {
 }

 fluid.Tabs = function () {
 // Constructor function.
 };
}) ();

Keep Common Aliases Private
Pass important dependencies in as an argument to
the closure:
jQuery.noConflict();

(function ($) {

// The $ variable is only visible inside our
private space.

$ === jQuery;

}) (jQuery);

$ === undefined;

Support Multiple Instances
on the Same Page
• Don't share global variables, encapsulate

state

• Parameterize CSS class names so different
instances can be styled differently

• Constrain your searches to a unique
container

Multiple Instance Support

function Tabs(parentContainerId, itemsSelector, cssClasses) {

 this.componentContainer = jQuery("#" + parentContainerId);

 this.items = jQuery(itemsSelector);

 this.currentlySelectedItem = items[0];

 this.classNames = cssClasses;

};

var portalTabs = new Tabs("portalTabs", "li", {selected:
"portalTabs-selected"});

var portletTabs = new Tabs("myPortlet-tabs", "li", {selected:
"myPortlet-selected"});

Don't Wildly Scan by Class

jQuery(".highlighted", jQuery(this.componentContainer));

not

jQuery(".highlighted");

Fluid Components
We use all these techniques and a few more:

• Unobtrusiveness

• DOM Agnosticism

• Highly configurable

Fluid Design Goals
• Components should be customizable

• Skinnable with style sheets

• Customize the structure and appearance
by modifying HTML

• Inject custom handlers and logic

• Accessible from the start

Unobtrusiveness
Separation of code and content

jQuery("#myItem").click(

function () { alert "foo";}

);

 not
<div id="myItem" onclick="function()
{ alert('foo') };">

Don't Make Assumptions
About the DOM
• Don't make assumptions that will prevent

customization...

• Flexible containment hierarchy

• Types of elements

• Class names

Allow Users to Specify
Their Own Selectors
• Components bind to a set of "interesting

things"

• Use jQuery selectors to form these
bindings, but make them configurable

• Otherwise, if the HTML changes, your
hard-coded selectors will break

• Allow users to pass in their own alternate

function Tabs(elementSelectors) {
this.selectors = jQuery.extend({},
elementSelectors, defaults.selectors);

}

Good Defaults
defaults: {

 selectors: {

 tabContainer: "#tabList",

 tabs: "#tabList li",

 tabPanels: "#panels div",

 },

 styleNames: {

 selected: "key-highlight",

 focussed: "highlight",

 disabled: "dim"

 },

 activate: function () {

 alert("Doesn't do anything in this prototype. " +

 "Add your own activate function here!");

 },

 showDebugPane: false

}

Provide Useful Extension
function Tabs() { ... };

Tabs.prototype.shouldSelect(element) { ... };

Tabs.prototype.willSelect(element) { ... };

Tabs.prototype.willDisplayPanel(forTab) { ... };

var myTabs = new Tabs();

myTabs.shouldSelect = function (tab) {

 return (!tab.is(".disabled"));

}

myTabs.willDisplayPanel = function (activeTab) {

 getContentFromServerForTab(activeTab);

}

JavaScript Accessibility

What is Accessibility?

A New Definition
• Accessibility is the ability of the system

to accommodate the needs of the user

• Disability is the mismatch between the
user and the interface offered by the
system

• We all experience disability

Fluid’s a11y Vision
• Embrace diversity: one size doesn’t fit all

• Recognize different needs under different
circumstances

• Build systems that can bend and adapt to
meet those user needs

Accessible is Better
• The curb cut effect: everyone benefits

• Interoperable

• Easier to reuse and repurpose

• Better future-proofing

• More robust

• Works on more devices

Familiar Techniques
• Label images with alt text

• Label form fields with <label> tags

• Skip links and access keys

• Use semantic markup

A New Can of Worms
• The shift from document to application

• The familiar techniques aren’t enough

• Most DHTML is completely inaccessible

• New techniques are still being figured out

Assistive Technologies
• Present and control the user interface in

alternative ways

• Screen readers

• Screen magnifiers

• On-screen keyboards

• Use built-in operating system APIs to
understand the user interface

The Problem
• Custom widgets often look but don’t act

like their counterparts on the desktop

• HTML provides only simple semantics

• Not enough information for ATs

• Dynamic updates require new design
strategies to be accessible

The Solution
• Describe user interfaces with ARIA

• Add consistent keyboard controls

• Provide flexible styling and presentation

Keyboard Accessibility

Keyboard Navigation
• Everything that works with the mouse

should work with the keyboard

• ... but not always in the same way

• Support familiar conventions

Keyboard Conventions
• Tab key focuses the control or widget

• Arrow keys select an item

• Enter or Spacebar activate an item

• Tab is handled by the browser. For the
rest, you need to write code.

Tabbing and Tabindex
• Each focusable item can be reached in

sequence by pressing the Tab key

• Shift-Tab moves backwards

• The tabindex attribute allows you to
customize the tab order

• tabindex=”1” removes element from the
tab order: useful for custom handlers

Tabindex examples
<!-- Tab container should be focusable -->

<ul id=”animalTabs” tabindex=”0”>
 <!-- Individual Tabs shouldn’t be focusable -->

 <!-- We’ll focus them with JavaScript instead -->

<li id=”tab1” tabindex=”-1”>Cats

<li id=”tab2” tabindex=”-1”>Dogs

<li id=”tab3” tabindex=”-1”>Alligators

Setting Tabindex with jQuery
// Put the tab list in the tab order.

jQuery(“#animalTabs”).tabindex(0);

// Remove the individual tabs from the tab order.

// We’ll focus them programmatically with the arrows.

jQuery(“#animalTabs li”).tabindex(-1);

Handling Focus Events
// Make the tabList focusable with Tab.

var tabList = jQuery(“#animalTabs”).tabbable();

// Make the tabs selectable with the arrow keys.

var tabs = jQuery(“li”, tabList);

tabs.selectable(tabList, {

willSelect: function(aTab) {

aTab.addClass(“highlight”);

}

});

Adding Activation Handlers
// Make each tab activatable with Enter & Spacebar

tabs.activatable(function(aTab) {

alert(“You just selected: “ + aTab.text());

});

Supporting Assistive
Technology

Opaque Markup
// These are tabs. How would you know?

Cats

Dogs

Gators

<div>

<div>Cats meow.</div>

<div>Dogs bark.</div>

<div>Gators bite.</div>

</div>

ARIA
• Accessible Rich Internet Applications

• W3C specification in the works

• Fills the semantic gaps in HTML

• Roles, states, and properties

• Live regions

Roles
• Describe widgets not present in HTML 4

• slider, menubar, tab, dialog

• Applied using the role attribute

States and Properties
• Added to elements within the DOM

• Properties describe characteristics:

• draggable, hasPopup, required

• States describe what’s happening:

• busy, disabled, selected, hidden

• Applied using custom aria- attributes

Using ARIA
// Now *these* are Tabs!

<ul id=”animalTabs” role=”tablist” tabindex=”0”>
 <!-- Individual Tabs shouldn’t be focusable -->

 <!-- We’ll focus them with JavaScript instead -->

<li id=”cats” role=”tab” tabindex=”-1”>Cats

<li id=”dogs” role=”tab” tabindex=”-1”>Dogs

<li id=”gators” role=”tab” tabindex=”-1”>Gators

<div id=”panels”>

<div role=”tabpanel” labelledby=”cats”>Cats meow.</div>

<div role=”tabpanel” labelledby=”dogs”>Dogs bark.</div>

<div role=”tabpanel” labelledby=”gators”>Gators bite.</div>

</div>

Setting ARIA with jQuery
var tabContainer = jQuery(“#animalTabs”);

tabContainer.ariaRole(“tablist”);

var tabs = jQuery(“li”, tabContainer);

tabs.each(function(idx, item) {

jQuery(item).ariaRole(“tab”);

});

tabs.eq(0).ariaState(“selected”, “true”);

var panels = jQuery(“#panels > div”);

panels.each(function(idx, item) {

jQuery(item).ariaRole(“tabpanel”);

};

Live Regions
• Stock tickers, Ajax validation, etc.

• Need to identify areas that are updated

• Associate controls with live content

• Types of changes (add/remove/modify)

• Is it appropriate to interrupt the user?

Be Polite
• aria-live=”polite”: only announce if

nothing else is going on.

• aria-live=”assertive”: Announce
ASAP, but don’t interrupt.

• aria-live=”rude”: Updates are
extremely important. Interrupt
immediately.

Things to Think About
• What kind of UI are you building?

• Does it resemble something familiar?

• What states or modes does it have?

• Can you reuse an existing widget?

Accessibility Resources
• http://wiki.fluidproject.org/display/fluid/DHTML

+Developer+Checklist

• http://wiki.fluidproject.org/display/fluid/UX+Accessibility
+Walkthrough+Protocols

• http://developer.mozilla.org/en/docs/Accessible_DHTML

• http://developer.mozilla.org/en/docs/Key-
navigable_custom_DHTML_widgets

• http://developer.mozilla.org/en/docs/
AJAX:WAI_ARIA_Live_Regions

http://wiki.fluidproject.org/display/fluid/DHTML+Developer+Checklist
http://wiki.fluidproject.org/display/fluid/DHTML+Developer+Checklist
http://wiki.fluidproject.org/display/fluid/DHTML+Developer+Checklist
http://wiki.fluidproject.org/display/fluid/DHTML+Developer+Checklist
http://wiki.fluidproject.org/display/fluid/UX+Accessibility+Walkthrough+Protocols
http://wiki.fluidproject.org/display/fluid/UX+Accessibility+Walkthrough+Protocols
http://wiki.fluidproject.org/display/fluid/UX+Accessibility+Walkthrough+Protocols
http://wiki.fluidproject.org/display/fluid/UX+Accessibility+Walkthrough+Protocols
http://developer.mozilla.org/en/docs/Key-navigable_custom_DHTML_widgets
http://developer.mozilla.org/en/docs/Key-navigable_custom_DHTML_widgets
http://developer.mozilla.org/en/docs/Key-navigable_custom_DHTML_widgets
http://developer.mozilla.org/en/docs/Key-navigable_custom_DHTML_widgets

Where to go next?

Resources
• Fluid DHTML Developers Checklist

• Fluid Javascript Resources

• Links to our favorite JS Resources

http://fluidproject.org
http://fluidproject.org

Tools
• Firefox

• Firebug

• JSLint in Eclipse or Aptana

• IE Debugging

• Script Debugger in the free version of
Visual Studio for the Web

http://fluidproject.org
http://fluidproject.org

Q & A

