
On Continuing Creativity

Colin	Clark,	Lead	Software	Architect
Sepideh Shahi,	Senior	Inclusive	Designer

Inclusive	Design	Research	Centre,	OCAD	University



dem ave we di people inna
saying we ave no power to affec change

d’bi, r/evolution, 333, 2011



Inequality is Growing
•85%	of	post-2008	economic	growth	was	pocketed	by	
the	richest	1%	
• The	U.S.	ranks	35th	out	of	37	OECD	countries	in	terms	
of	poverty	and	inequality
•More	than	1	in	every	8	Americans	are	living	in	poverty
•Only	64%	of	U.S.	voting-age	population	was	
registered	to	vote in	2016—a	smaller	share	of	
potential	voters	than	just	about	any	other	OECD	
country

Philip Alston, UN OHCHR Report on extreme poverty and human rights



Our Technologies are Complicit
“The	United	States	is	one	of	the	world’s	richest,	most	
powerful	and	technologically	innovative	countries;	but	
neither	its	wealth	nor	its	power	nor	its	technology	is	being	
harnessed	to	address	the	situation	in	which	40	million	
people	continue	to	live	in	poverty…

Much	more	attention	needs	to	be	given	to	the	ways	in	
which	new	technology	impacts	the	human	rights	of	the	
poorest	Americans.”	



Technology is practice; “the way 
things are done around here.”

Ursula	Franklin
The	Real	World	Of	Technology,	1989



“Jai guru deva om
Nothing's gonna change my world,
Nothing's gonna change my world.
Nothing's gonna change my world,

Nothing's gonna change my world.”
The Beatles

Across the Universe, Let it Be, 1970



The Tyranny of Change

•More	than	80%	of	the	total	cost	of	software	development	is	
devoted	to	software	maintenance… mainly	due	to	the	need	
for	software	systems	to	evolve	in	the	face	of	changing	
requirements.
• Unanticipated	requirement	changes… account	for	most	of	the	
technical	complications	and	related	costs	of	evolving	
software.	
• Kniesel,	et.	al.	(2002)	“Unanticipated	Software	Evolution.”	In	J.	
Hernandez	and	A.	Moreira	(Eds.):	ECOOP	2002	Workshops,	
LNCS	2548,	pp.	92–106.



Change is Hard for Developers…

• Change	has,	from	the	perspective	of	software	
practice,	inordinately	been	treated	as	something	to	
avoid,	minimize,	control,	or	manage.
• On	one	hand,	methods	for	requirements	
management	that	aim	to	get	it	right	from	the	start,	
and	freeze	it—change,	here,	is	cast	as	risk
• On	the	other	hand,	agile	methods	cast	their	gaze	
inwards;	teams	“embrace	change”	but	only	within	a	
bounded	scope—change	becomes	a	choice	to	be	
wielded	by	expert	designers	and	developers	alone







…But change is Intolerable for Users

• For	users,	software	products	tend	to	be	a	“take	it	or	leave	it”	
proposition;	if	someone	needs	something	different,	often	their	only	
recourse	is	to	look	elsewhere,	at	other	products
• Beloved	features	may	disappear,	move,	or	be	recast	by	software	
designers	at	any	time	and	without	notice	or	permission,	leaving	users	
to	adapt	or	relearn	their	hard-earned	workflows
• The	power	to	enact	(or	forgo)	changes,	to	manage	their	impacts,	
scales	and	timing,	rests	overwhelmingly	in	the	hands	of	those	who	
initially	created	the	software—this	is,	I	believe,	what	constitutes	
substantive	ownership	of	software



The Failure of Models
•Personas	typically	“blur”	individuals	by	representing	multiples	as	

one—they’re	static

•However,	we	are	all	multiplicities:	dynamic,	evolving,	and	with	
changing	needs	and	preferences	under	different	circumstances	
and	in	different	environments

• Industrial	design	literature	emphasizes	using	personas	to	reduce	
diversity	and	avoid	edge	cases	(See	About	Face,	Alan	Cooper)

•More	importantly,	if	personas	stand	in	for	our	absent	users	
during	the	design	process,	where	are	they?



“The single story creates stereotypes, and the problem 
with stereotypes is not that they are untrue, but that 
they are incomplete. They make one story become the 
only story." 

Chimamanda Ngozi Adichie, 
“The Danger of a Single Story”



With revolution in the air 
and people changing everywhere.

Step forward now, 
no need to hide.

Bad Brains
Joshua’s Song, Rock the Light, 1983



An	open	community	for	co-design,	including	
designers,	users,	artists,	testers,	accessibility	
experts,	thinkers,	and	all	the	other	people	who	

don’t	usually	fit	in	open	source	software	
communities.

fluidproject.org



Co-Design and Community
• Co-design	is	designing	with,	not	simply	for.	It	involves	asking	the	people	
who	might	otherwise	just	be	"users,"	particularly	those	on	the	margins	of	
today’s	technology	experiences,	to	be	part	of	the	design	process.
• Co-design	typically	starts	with	a	process	of	discovering	and	negotiating	
roles—asking	participants	how,	when,	and	how	often	they	want	to	be	
involved,	and	making	space	to	accommodate	different	“scales”	of	
investment	and	engagement.	It	takes	time.
• It	demands	that	all	participants	have	equal	access	to	the	information—
plans,	ideas,	prototypes,	and	works	in	progress—that	is	essential	for	full	
decision-making	and	responsible	contribution.	
• A	starting	point	for	this	involves	an	opening	up	of	agile’s iterative	and	
incremental	processes	and	open	source’s	collaboration	to	be	more	porous	
and	include	a	broader	range	of	team	participants	and	modes	of	
engagement.





“Citizen participation is… citizen power. It is the redistribution of power 
that enables the have-not citizens, presently excluded from the political 
and economic processes, to be deliberately included in the future. It is the 
strategy by which the have-nots join in determining how information is 
shared, goals and policies are set… resources are allocated, programs are 
operated, and benefits… are parceled out. In short, it is the means by 
which they can induce significant social reform which enables them to 
share in the benefits.”

Arnstein,	Sherry.	(1969).	“A	Ladder	of	Citizen	Participation.”	AIP,	
Vol.	35,	No.	4,	July	1969,	pp.	216-224.





cities.inclusivedesign.ca







Modes of Co-Design

1. Workshops	and	synchronous	events	led	by	facilitators

2. Embedded	co-design	toolkits	(led	by	community	members	
themselves)

3. Open	Studio	methods	and	crits (open	source	designing)

4. Paired	designer/user	methods	(working	together	on	day-to-day	
designs)

…Users	designing	it	themselves



Co-design Artifacts

Collective results from using
the co-design toolkit 

Co-design Toolkit

Built with the community &
understanding of their
needs and prefernces

Co-Design
Team

Enabling Internal
Facilitators In The
Community

Embedding
External Facilitators
In The Community

Training Internal
Facilitators From
The Community





The Digital Economy
Imagine	a	digital	economy	that	would	follow	
the	7	co-operative	principles

1. Voluntary and Open Membership
2. Democratic Member Control
3. Member Economic Participation
4. Autonomy and Independence
5. Education, Training, and Information
6. Cooperation among Cooperatives
7. Concern for Community







Continuing Design (after design)





Material Case Study: Mads Dahlke
• Mads	Dahlke is	the	host	of	the	YouTube	channel	Sail	Life,	and	(coincidentally)	a	software	developer.	

• He’s	doing	something	with	his	sailboat,	I	argue,	that		simply	can’t	be	done	with	software.	

• Dahlke has	customized	his	boat	substantively,	including:
• removing	and	replacing	the	boat’s	entire	deck
• designing	custom-fit	fuel	tanks
• completely	reconfiguring	the	layout	of	a	cabin	to	better	suit	his	needs	as	a	workspace
• repaired	and	redesigned	many	flaws	resulting	from	oversights	or	cut	corners	during	the	boat’s	
original	design	and	construction.	

• Indeed	the	boat’s	original	designers	likely	never	conceived	that	their	product	would	still	be	in	active	
use	today,	nor	did	they	design	it	with	any	intention	of	it	being	modified	in	the	ways	that	Dahlke has	
accomplished

• Yet	Dahlke is	not	a	professional	boat	builder	or	expert	restorer.	He	has	pursued	his	project	by	
acquiring	some	generalized	technical	skills	and	commodity	tools,	while	participating	in	a	larger	
community	of	other	sailors	and	do-it-yourselfers who	have	worked	on	similar	projects	and	shared	
their	own	learnings.











How can we give an individual the 
power to (re)make this decision?

What communities might arise 
around this design choice?

How can we support the 
serendipitous, unexpected, and 
informal?



User Interface Options Demo





Material Case Study: Amy Twigger-Holroyd
• Amy’s	reknittingmethods	provide	knitters	with	a	way	to	modify,	add	to,	or	
subtract	from	already-completed	knitted	garments	(including	industrially	
produced,	machine-made)
• Unravelling,	cutting,	grafting,	insertions,	stitch	hacks,	and	replacements

• Knitting,	viewed	materially,	has	a	remarkably	dual	quality—you	can	take	
yarn	and	knit	a	sweater,	and	you	can	“frog	it,”	taking	it	back	to	its	elements	
(yarn),	and	knit	something	new	with	its	materials
• Re-knitting	is	not	simply	an	idiosyncratic	personal	practice	of	Twigger
Holroyd	or	her	colleagues,	but	“an	integral	part	of	the	practice	of	knitting”	
generally,	a	characteristic	of	the	medium	and	the	traditional	methods	of	
knitting	itself
• A	speculative	future:	what	if	software	was	like	knitting?





Material Software
• A	knitted	object	(software	product)	is	a	vector—a	medium	of	production,	
communication,	and	becoming
• A	reknitted	garment	(application)	represents	not	only	the	content	of	the	vector	of	
knitting	(software),		but	itself	a	new	vector,	or	form,	for	the	creation	of	another	
work	from	and	within	it.	This	newness	is	not	just	the	result	of	a	process	of	copying,	
quotation,	or	appropriation,	but	of	the	possibility	of	the	artefact	itself—its	ability	
to	engender	new	forms	and	futures,	“the	immaterial	virtuality of	the	material”	
• Knitted	objects	(software	programs)	retain	their	modifiability	and,	as	a	result,	have	
the	ability	to	support	a	“community	of	practice”	within	themselves.	As	artefacts,	
they	can	be	worked	on	by	multiple	creators	and	can	support	unanticipated	uses	
and	after-the-fact	adaptation.	It	is	this	ability	to	be	serendipitously	added	to,	
subtracted	from,	grafted	onto,	or	unravelled	in	a	form	not	already	planned	for	and	
designed	into	the	object	that	defines	my	concept	of	materiality,	the	latent	and	
unrealized	potential	of	software.	



Material-ing Tools

• This	means,	I	think,	that	the	ontological	question	
regarding	what	constitutes	a	material	vs.	a	tool	can	be	
set	aside
• Instead,	imagine	an	artefact	that,	for	one,	is	a	
completed,	singular	tool—yet	can	be,	for	another,	the	
raw	material	for	generating	something	new	or	
different
• The	difference,	then	is	largely	contextual	and	
perspectival,	rooted	in	communities	of	practice



Characteristics of Material Software

1. Representation	of	program	code	as	data—material	for	reflection	and	
modification	by	other	programs	or	by	authors	who	come	along	later	in	the	
process.	An	ecosystem	of	authoring	and	customization	tools.

2. Availability	of	landmarks—names	or	other	stable	means	of	reference	
(e.g.	via	CSS	selectors)—for	behavioural and	compositional	points	within	
program	code,	such	that	another	author,	working	outside	the	original	
program’s	code,	can	identify	these	points	and	issue	their	own	alternative	
logics.

3. Complete	externalization	of	program	state,	also	as	data,	in	a	form	that	it	
can	be	understood,	manipulated,	and	modified	live	by	programs	located	
outside	of	the	runtime	of	the	software,	so	that	software	can	be	
redesigned	piecemeal	and	from	a	distance.



Limits of Material Metaphors

• Software,	we	might	imagine,	is	a	“material	of	the	mind,”	yet	one	which	is	
expressed	in	a	uniquely	computational	form—infinitely	reproducible,	
demanding	of	precision	and	detail
• Ideas,	in	system,	are	complex	and	even	sometimes	inconceivable	outside	of	
the	context	in	which	they	were	originally	situated	and	elaborated.	
• Software	is	not	yet,	and	perhaps	never	can	be,	a	craft.	Its	material	qualities	
may	be	far	too	different,	ultimately	more	subject	to	change	and	systematic	
contingencies	than	artefacts	in	the	physical	world—paradoxically	more	
immaterial
• Perhaps	music,	sound,	and	poetry	provide	us	with	other	hints	about	how	
materiality	functions	immaterially?



In Summary

• We	need	to	come	to	terms	with	change	as	a	catalyzing	force	in	our	
projects—not	just	something	be	managed	or	controlled	or	minimized
• Our	current	collaborative	methods—agile	(especially	early	forms),	
open	source	software,	participatory	design—are	necessary	but	
insufficient	to	create	equitable	social	systems
• Our	discipline(s)	need change,	and	need	more	active	agency	for	
change	within	software	systems—by	bringing	“users”	into	the	process	
as	serious	co-creators,	and	by	giving	them	new	powers	to	continue	the	
design	process
• Material	metaphors,	such	as	craft,	provide	us	with	a	crucially-needed	
imaginary,	different	from	dominant	mathematical	and	techno-scientific	
tropes—but	may	not	take	us	far	enough	into	a	new	field



It's been a long, a long time coming
But I know a change is gonna come, 

oh yes it will

Sam Cooke
A Change is Gonna Come, Ain’t That Good News, 1964


