
To Inclusive Design Through Contextually Extended IoC
Infusion IoC, a JavaScript Library and Mentality for Scalable Development of

Accessible and Maintainable Systems

Antranig Basman

Fluid Project, OCAD University, Toronto, Canada

antranig.basman@colorado.edu

Clayton Lewis Colin Clark

University of Colorado, Boulder/Fluid Project

clayton.lewis@colorado.edu/cclark@ocad.ca

Abstract
Using current software development techniques, code and
designs are often unmaintainable from the point of incep-
tion. Code is brittle and hard to refactor, hard to press to new
purposes, and hard to understand. Here we present a system
aimed at creating a model for scalable development, address-
ing this and several other critical problems in software con-
struction. Such an aim is far from new, and has resembled
the aims of each generation of software methodologists over
the last 50 years. It deserves comment why these aims have
so signally failed to be achieved, and we will present argu-
ments as to why the combination of techniques explained
here could expect to lead to novel results.

Software products of today are notoriously unadaptable.
An application which meets need A generally cannot be
extended to meet apparently very similar need A ′ without
something resembling “software engineering”. Applications
present users with a “take it or leave it” proposition — if
the software doesn’t happen to meet a user’s needs or pref-
erences, there’s no way to change it without writing more
code, which is out of reach for most users. Indeed, software
regularly fails to be easily adaptable to meet the needs of
users with differing needs, such as in the case of accessibil-
ity. These “precarious values” — accessibility and usability
with different devices, languages, and personal needs — are
typically left until the end or ignored, and represent a sig-
nificant expense in traditional approaches to software devel-
opment. Often these needs are met by developing a largely
unrelated version of the application, requiring maintenance
of additional, separate code bases.

Our aim is to enable Inclusive Design[3], whose objective
is to satisfy the needs and desires of the broadest range of
users possible. Every designer sets out with this objective to
a certain extent, but as well as limitations of intent, there

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0942-4/11/10. . . $10.00

are also strong limitations placed by the technology and
economics of software development. Due to the poor scaling
characteristics of current techniques, even meeting one set of
relatively inflexible needs can be an expensive undertaking,
especially over the long term.

To address these problems of adaptability, we present a
model for software construction, together with a base li-
brary, Fluid Infusion, implemented in the JavaScript lan-
guage. Fluid Infusion implements an Inversion of Control
model, Infusion IoC, which features a notion of context as
the basis for adaptability, resolved in a scope modelled in
terms of a data structure, a component tree expressing the
computation to be performed. In the Context-Oriented Pro-
gramming community[7], this model of scoping is known
as structural scoping. We will also work with a model of
transparent state in which all modifiable state of interest to
users is held in publicly visible locations, indexed by path
strings. This model for state is isomorphic to that modeled
by JSON[6], a well-known state model derived from, but
not limited to, the JavaScript language. Instantiation in the
model is handled by an Inversion of Control system extended
from the model of similar system such as the Spring Frame-
work or Pico first developed in the Java language.

We relate such systems to goal-directed resolution sys-
tems such as Prolog, and show that they have beneficial
properties such as homoiconicity[2] which have not been
seen in a strong or widespread form since the days of LISP.
We exhibit some cases to show how the framework enables,
through a simple declarative syntax, types of adaptation and
composition that are hard or impossible using traditional
models of polymorphism. We also relate Infusion IoC to
other software methodologies such as Aspect-Oriented Pro-
gramming and Context-Oriented Programming which have
been found to greatly increase flexibility and expressiveness
of designs. We conclude with some remarks on the applica-
bility of the system to the parallelisation of irregular algo-
rithms, and its relationship to upcoming developments in the
ECMAScript 6 language specification.

General Terms Algorithms, Design, Human Factors, Lan-
guages

Categories and Subject Descriptors D.1.2 [Software]:
Programming Techniques—Automatic Programming; D.3.3
[Software]: Programming Languages—Polymorphism; E.2
[Data]: Data Storage Representations—Object Representa-
tion

Keywords JavaScript, Inversion of Control, Transparent
State, Accessibility, JSON, Context-oriented Programming

1. The Development and Need for Inversion
of Control systems

The core of the system described here is an “Inversion of
Control” system implemented in the JavaScript language. It
constructs applications from trees of components expressed
declaratively in JSON notation. Whilst the primary use of
the system is in assembling user interface markup and oper-
ating logic for HTML web applications, these ideas can be
adapted to other domains, illuminating broad issues of soft-
ware construction. We begin by examining the history and
motivation of similar systems, the relationship of our IoC
system to other models of software construction, and then
finish by describing some current applications, and planned
future work.

1.1 The Crucial Nature of Dependency Structure in
Software

In a pioneering work, John Lakos[1] identified the patterns
of dependency of parts of a software system on other parts
as key determinants of software quality. In his conception,
a piece of code A has “knowledge of” or “dependency on”
another, B, if names in B appear in A. To mark our tech-
nical uses of these concepts, we will qualify them by refer-
ring to “L-dependency” or equivalently “L-knowledge”. In
the C++ language in which Lakos was working, there are
various gradations of this knowledge, for example, whether
the knowledge about B was sufficient to affect the memory
layout of objects allocated in A, or merely required the com-
piler to have visibility of B names when compiling A code.
Although the details differ, the core of this formulation is
invariant across essentially all programming languages.

Lakos argued that code in a “dependency-correct” sys-
tem should form a directed acyclic graph (DAG), when ex-
pressed in terms of the logical units into which it was divided
and the L-dependencies among them. In the C++ language,
these logical units were often classes, although he noted that
this kind of boundary could be drawn at any level in a sys-
tem.

Lakos observed that there were many significant conse-
quences of constructing bodies of code with inappropriately
arranged L-dependency, following on from his initial effort
to control escalating build times in complex systems. Highly
interdependent code was harder to understand, harder to test
and maintain, and most importantly to our domain of end-
users, tended to be extremely brittle over time. Such code

imposes unexpectedly huge development costs in respond-
ing to seemingly innocuous feature requests.

1.1.1 Evaluating Physical Design Quality Through
Dependence Graphs

L-dependency problems are easiest to see in cyclic cases,
for example, when some part A of a system depends on part
B, but part B also depends on A. Consider the problem of
testing this system. One would like to find an order of testing
for the parts of the system, such that all the parts that A (say)
depends on have been tested before testing A. But when
there is a cycle in the L-dependency structure, there just is
no such order: in the example, B has to be tested before A,
but A has to be tested before B.

Even when there are no L-dependency cycles, systems
still differ in important ways, reflected in their L-dependency
structure. Figure 1 contrasts a few different cases of depen-
dency geometry. Each component is labelled with its level
number, which is the count of all components (including it-
self) which have L-dependence on that component. At the
left is a cyclic structure of the sort we just described. In the
centre is shown a system whose dependence graph forms a
balanced binary tree, representing a typical reasonably-well
factored system. At the right is a system with a horizontal
graph, composed of components which have no mutual L-
dependency.

Lakos proposed a measurement of “quality” of such a de-
pendence graph, which is the sum of all level numbers in the
graph, known as the cumulative component dependency
(CCD). This measure can be used to compare the quality
of the dependence structure of graphs involving the same
number of components. Lakos observes that arrangements
showing lower CCD numbers are associated with beneficial
properties of many kinds. These arrangements correspond
to applications which are easier to test, easier to refactor,
faster to build, and which offer better opportunities for reuse.
We will further observe that CCD numbers that do not ulti-
mately scale linearly in the number of code units form an
ultimate barrier to scalable design and ensure that the design
will come to be dominated by accidental complexity (section
3.3.2).

1.1.2 Consequences of Improving Dependence
Structure in Static Languages

As it turns out, the problem raised by Lakos’ recommenda-
tions on the organisation of dependencies cannot be fully re-
solved in C++, or other static languages, at all. We will con-
sider a typical case, of a design where the majority of depen-
dence arcs are caused by L-knowledge resulting from an ag-
gregation relationship — in classical object-oriented terms,
where, for example, object A has-a object B. Consider a hy-
pothetical DAG of dependency-correct code, organised into
units of these classes. Take two of these elements, A and
B — in terms of C++, aggregation-derived L-knowledge of
class A about class B, would translate into a requirement for

Figure 1: Comparison of Dependence Structures with Different Geometries for 7 components (following Lakos[1], pp.194-195)

objects of class A to bear responsibility for construction of
objects of class B, and not vice versa. This knowledge may
be pushed into a common ancestor, C — but wherever it re-
sides, this constructional knowledge cumulates towards the
root of the tree, creating a brittle base to the overall design.

1.1.3 Elaboration of the “brittle base” problem

The “brittle base” issue we described is best seen as a dy-
namic issue, affecting the quality of a design over its entire
trajectory from design through to maintenance. At any par-
ticular point in time, the naive method of propagating depen-
dencies from place to place across a design with n logical
units would require the instantiation in the design of O(n)
types with O(n2) overall information content in order to ex-
press the (cumulative) signature contracts between each pair
of nodes joined by arcs in the tree. These types express the
signatures of callbacks, travelling in the “upward” direction
from a point in the tree where a dependency is generated, and
the signatures of constructors, travelling in the “downward”
direction down to where a dependency is used.

Faced with this unacceptable proliferation of types, a
skilled designer will apply judgement to the overall design
and attempt to consolidate dependencies and their points of
generation into equivalence classes of units which may be
treated as equivalent (“is-a”) with respect to their depen-
dency transfer characteristics. Whilst they may be to some
extent “Procrustean” (having unused arguments in some
cases, or failing to transfer required ones) these solutions
may be of good quality at a particular point in the design
trajectory.

A problem occurs when during the “maintenance” phase
of the design, (or more accurately, simply its “period of
use”), an unexpected user requirement perturbs the situa-
tion by requiring an extra dependency transfer. The equiv-
alence mapping previously computed by the designer then
is no longer ideal. The design progressively strains under
this failure, perhaps even leading to the rejection of such re-
quirements as uneconomic. When the costs are finally paid,
the new ideal division of signatures into equivalence classes
may not be closely related to the old, leading to large change

costs proportional to the entire size of the design. This is an
important source of non-linear scaling of engineering costs
with respect to requirements.

1.1.4 Attempted solutions lead back to the core issue

Common attempted solutions to this kind of issue in non-
dynamic languages involve constructional design patterns,
usually factories. These impose two kinds of penalties.
Firstly, the family of products from the factory need to have
a common signature, a serious restriction. Secondly, whilst
some type information may be erased at this polymorphic
boundary, remanent type information still naturally cumu-
lates upwards in the DAG of knowledge in a way that pre-
vents scaling. In the next section we will explain how a
certain kind of framework, known as an Inversion of Control
system, can resolve these kinds of issues, given a sufficiently
dynamic base language.

1.2 Inversion of Control Systems

The Java language is not particularly dynamic, but enjoys
enough of this quality through its reflection system and the
possibility for bytecode manipulation that some workable
solutions to the fragile base problem emerged, generically
described as “Inversion of Control” (IoC). Martin Fowler
outlines some of the variants of IoC framework in [4]; pop-
ular frameworks in Java include Pico, Avalon, and currently
most popularly the Spring framework[20].

The defining activity of such an IoC system, specifically
named by Fowler as dependency injection is as follows: If
an object of class A needs an object of another class B at con-
struction time, rather than A’s code calling a constructor for
B, A’s need for a B is registered in some kind of declarative
format with the IoC system. The IoC system then injects an
instance of B into the object that needs it. The “inversion” is
that “asking for an object” is replaced by “being given an ob-
ject”. The operation of such a system relies intrinsically on
dynamic properties of the target language. In fact, rather than
“constructing itself” as is the case in static languages, the en-
tire tree containing A, B and all neighbouring dependencies
is constructed by the framework, informing the target code
of lifecycle points in a model similar to that of event-driven

frameworks. The IoC framework, in this model, takes the
place of the brittle constructional code otherwise placed in
class A or some higher point of dependency.

Users of these frameworks get increased agility in the
face of end-user requests and variability in environment.
That is, important environmental decisions (in the concrete
terms of workaday developers, issues such as transaction
management, database dialect, message resolution etc.) are
taken out of the code and replaced by declarative configura-
tion.

As well as resolving the “brittle base” problem, IoC
frameworks improve the L-dependence structure of a de-
sign in a number of ways. Firstly, a choice may be made not
to support designs with cyclic dependencies (use of Infusion
IoC mandates and assists this, whilst it is a configuration op-
tion available with Spring IoC). Secondly, the facilities of the
IoC system may flatten the dependence graph of a design by
removing a number of arcs, which represent dependencies
that would otherwise be manifest in the application design
but instead are subsumed into basic framework facilities.
More powerful IoC frameworks can remove progressively
more dependence arcs from the application design, depend-
ing on their idiom and capabilities.

1.2.1 Conclusions for scaling of design costs

We have identified two important routes through which tra-
ditional design methods fail to allow the costs of a design
to scale linearly with the number of “function points” ad-
dressed by the design. Firstly, the brittle base problem which
is resolved by essentially all IoC systems. Secondly, the ten-
dency of Lakos CCD numbers calculated from the physi-
cal design structure to scale faster than linearly. This second
point can only be addressed by methodologies which allow
the physical design structure to be improved whilst still ex-
pressing the same design. For this second point we will re-
turn in section 4.1.2 to show how the Infusion IoC system
can remove a large number of dependence arrows from a
physical design map which corresponded to cases of aggre-
gation and inheritance in a traditional object-oriented (OO)
design. Before then, we will consider in section 3.3 the im-
plications of these kinds of superlinear scaling for the scale
of economic benefits that could be realised through different
choices of methodologies.

1.3 Limitations and Extensions to the IoC model

A significant lack in existing IoC systems is a suitably flex-
ible concept of context. To a Java IoC system, the context is
a static piece of configuration (or associated runtime struc-
ture) known as a container. A configuration file is entered
into the system as a global specification and if users or de-
velopers require changes in resolution based on recognition
of a new context or requirement, they need to change the
file. Even organising such files hierarchically does not per-
mit decisions to be made based on dynamic considerations.

But we can extend the notion of IoC to allow contexts as
well as tasks to shape what a system will do.

The Fluid IoC system supervises the matching of names
of functions to implementations. What we speak of as a
function name is more generalised than the traditional no-
tion of a “function” in that it does not necessarily correspond
to a function as implemented directly in the programming
language. All names of such functions could, however, if
registered globally serve as “function names” if required. In-
stead a “function name” corresponds to the notion of a “task
to be performed” in the world of a user. There are generally
different classes of “users”, operating at different levels in
a the tower of abstractions, where the definition of a task at
the level of one user, say an end user, decomposes it into
subtasks that make sense only to a user at another level, say
an application designer.

An implementation provider — and even unrelated third
parties — can provide a set of directives to the IoC system,
which specify under which conditions a given implementa-
tion is an appropriate one to deliver to an end user. These
directives are named demands blocks, matching conditions
which are represented by supplying one or more context
names. These names are also simple strings, like function
names.

The power of the system to proceed in a contextually
aware way is significantly enhanced by allowing the names
of products of the system to serve as names of contexts
guiding the construction of future products. Some names
may serve as both function names and context names. The
name of a user interface widget, for example, may be used
sometimes to specify needed functionality, and sometimes
to specify a context in which a subsidiary widget might be
embedded.

2. Relation to other Programming Paradigms
2.1 Link to Goal-Directed Programming

One way of understanding the cascade of instantiations per-
formed by an IoC system in pursuit of constructing a par-
ticular component, is as related to the resolution process
performed by knowledge-oriented systems such as Prolog.
Prolog casts knowledge in the from of relations, connect-
ing one term with another. The input from the user proceeds
“forwards” in their world, expressing the dependence of one
proposition (or alternatively seen, “goal”) on another. Each
rule of this kind is entered into a database of such rules pro-
gressively, building up an unbounded network linking these
propositions. A run of the system takes the form of request-
ing the status of a particular proposition — execution then
cascades “backwards” (in the view of the developer) through
the set of dependent rules until an answer can be determined.

Recursive resolution of dependent components by an IoC
system can be seen as a model of a similar process as the
cascade of Prolog relation resolution. Important differences
are that whilst this IoC system currently operates no form

of “backtracking”; on the other hand, we add a concept
of context to the resolution system. Absence of contextual
awareness was historically a weakness of Prolog, which,
for example, provided no straightforward means for dealing
with situations which changed over time.

2.2 Link to Aspect-Oriented Programming

A popular approach for dealing what it terms “cross-cutting
aspects of a design” which has grown up alongside and in
some cases intertwined with the use of IoC is known as
“Aspect-Oriented Programming” (AOP). In this model, the
implementation domain of a codebase is stratified, forming
a higher “meta-level” of design comprising units of code
(in a related, but usually distinct syntax) which consists of
directives which advise the operation of the remaining base
level of code which can then usually enjoy some kind of
simplified implementation.

AOP systems are often extremely powerful, and have the
ability to issue advice which modifies the execution of the
base code at the level of individual method calls or prop-
erty access — either modifying these operations or replacing
them entirely. The points where an AOP advice matches or
“joins” a design are indivually named join points, described
by a specification or query known as a pointcut. Pointcut
expressions take quite low-level forms, usually expressed in
a dialect reminiscent of regular expressions. With the data-
hiding mentality which goes together with object-orientation
(OO), AOP pointcuts usually have quite limited insight into
the contextual situation which has been matched. As a re-
sult of the very local oversight of the pointcut matching and
advice process, AOP designs can become very hard to un-
derstand without custom tools.

The execution modification effected at an AOP join point
may be considered as a kind of dispatch. A more familiar
kind of function dispatch is the resolution from the name
of a polymorphic function in an OO hierarchy onto a par-
ticular implementation held in a derived class. Infusion IoC
also implements a form of dispatch by following rules held
in declarative structures known as demands blocks (see
section4.2). Common across all situations is the progress
from a specification of an operation to be performed in the
form of a name to a particular concrete implementation to be
used in a particular context.

Infusion IoC has a similar kind of power of dispatch to
traditional AOP, since the set of dispatch rules is always open
and external to the body of code being advised. However,
compared to AOP, it is at the same time limited in its scope
for matching, as it is broadened in its ability to interpret con-
text. A Infusion demands block can only act at points in a
design where the IoC system is already instantiating a sub-
component in the tree, or else where the user has explicitly
requested its operation (e.g. by means of a suitably declared
event or method). However, when it does act, the dispatch
modification may make use of the same contextual resolu-
tion system which guided its own matching, to stably dis-

cover relevant pieces of state over the entire component tree
in scope, rather than just those located close to the join point
site as in traditional AOP. This tradeoff of increased formal-
ity of matching against increased contextual understanding
should produce designs which are much easier to understand
as a whole, although we still anticipate a very important role
for assistive tools.

2.3 Relation to Context-Oriented Programming

A relatively recent innovation, aimed at precisely the weak-
ness of traditional goal-directed languages that we identified
in section 2.1, is that of Context-Oriented Programming
(COP) [7]. COP can also be seen as a related development
to AOP of the previous section, as well as an outgrowth of
OOP. In the original formulation of the authors, code held
within standard methods in an OO hierarchy is enhanced
by definitions of partial methods which are aggregated in
groups known as layers. At the time of execution of the en-
hanced method, one or more of these layers may be active,
leading to a modification of the base method by partial meth-
ods held in the active layers. A partial method differs from
a standard method in that it contains a control flow point at
which it may defer to the original method — this control
flow point is named by the COP authors as proceed. The
layering of a partial method onto a standard method (or stack
of other partial methods) can thus be seen in AOP terms as
an around advice — when a layer containing such a partial
method is activated, it advises the base method, wrapping it
in the control flow held in the partial method. [9] contains
more detailed comparison and contrast of COP with AOP.

Since awareness of context is one of the crucial ways in
which our system differs from many previous systems, it is
relevant to examine common ground between our system
and COP, and also ways in which it differs.

2.3.1 COP Layering with OOP — Portability Profile

COP is explicitly founded upon OOP, since the mechanism
of a layer, once activated, is to effect behavioural modifica-
tion by advising the workflow of methods in their position
in an OO hierarchy. For this reason, COP can be effectively
ported to a wide variety of standard OO languages, such as
Smalltalk, Java, Python, etc. — [8] contains a survey of such
ports extant at 2009. On the other hand, the Infusion IoC sys-
tem presented here is not based on OO, and relies strongly
on base language features which allow manipulation of state
held as recursive literals of the language. As a result our
system could only easily be ported to languages without a
fundamental OO representation and with support for such
literals such as LISP and JavaScript.

2.3.2 COP scoping rules

COP presents a number of routes for determining when lay-
ers should be activated — [8] mentions a few, such as thread-
local and global which are supported by our system, and
some which are not, such as dynamic extent-based (block

plus call stack-scoped) activation. However, the essential
and most fundamental mode of activation of contexts in our
system is one which the COP authors, as well as ourselves,
name structural scoping. Structural scoping is described in
the COP literature at [9]. Since COP is not cast in terms of
structures but instead in terms of objects, structural scoping
is presented as an extension to the COP activation model for
use in a particular domain (a graphical graph editing applica-
tion, Morphic) with activation in practice honoured through
dynamic extents in an adaptation library.

Since our system organises code units (“components”)
into a directly–addressed transparent state structure (section
4.3), the primary and natural means of context scoping is
structural, with the global and dynamic methods held as
secondary. The scoping rules are treated in detail in section
4.1.3.

2.3.3 Implicit formation of layers

Whilst a layer in COP is built up as a self-contained, named
unit, the units of context which are activated in our system
are built up implicitly through open aggregation. The “layer”
which is active for a particular dispatch in Infusion IoC is
composed just out of those demands blocks (see section 4.2)
which match the names which can be found in the portion
of the structure holding the dispatch site which is in scope.
Thus our system remains always open for modification by
third parties, without requiring access either to a particular
layer definition which is in effect, or access to the call stack
below the point at which dispatch is to be modified.

3. Context of the Solution
3.1 Domain of Validity

It is useful to try to draw out the domain of software tasks for
which this approach may be relevant, against a background
of tasks for which it may be less helpful. There is a tradi-
tional dichotomy drawn between problems which could be
named as “deep” — those limited by problem complexity,
such as design of a compiler, operating system or database,
and others which could be termed “broad” — those limited
by problem change and definition, such as the interfaces and
implementations of user-facing systems on the web and else-
where. The system described here is most applicable to the
latter type of problem.

However, this dichotomy itself deserves some comment.
Software engineers, and computer scientists, as they are for
the most part working surrounded by their peers, tend to ar-
rive at a disproportionate focus on the former, “deep” cate-
gory of problem, the form of problem which they create for
themselves and each other. This leads to an exaggerated fo-
cus both on the particular kinds of difficulties which these
problems pose, and also on their real value in the world.
The overwhelming majority of consumers for software ar-
tifacts are not programmers — consisting in the most part
of normal human beings wanting some work done — this

work in the most part of some orderly and idiomatic access
to some form of shared state in the world. It is actually the
norm, rather than the anomaly which software professionals
can sometimes take it, for problem definitions to be vague,
constantly shifting, and even to themselves comprise a huge
domain of variation with respect to the “market” — the full
variation of human requirements within the scope of Inclu-
sive Design. We contend that this self-focus by the commu-
nity has led to the prevalence of and disproportionate value
attached to approaches such as the “data hiding” strand of
the object-oriented philosophy which are actively counter-
productive when applied to the vast majority of program-
ming tasks as laid out in our presentation of this dichotomy.
Below (in section 4.3) we will explain how the antithesis of
this approach, which we name transparent state, is crucial to
our formulation of IoC and also to addressing these kinds of
tasks in general.

3.2 Existing Configurable Systems

It is worth examining the most configurable kinds of systems
which the industry has so far produced, and explain the kinds
of variation which we aspire to express, and why they are
essential to any conception of Inclusive Design, beyond the
traditional conception of “accessibility”.

Some highly configurable products are intricate desktop
applications, such as Microsoft’s Visual Studio or IBM’s
Eclipse, aimed at developers, and Microsoft Word, a word
processing application ostensibly aimed at normal human
beings. These offer configurations including the following
kinds:

• Configuration of keyboard bindings used to invoke func-
tions of the application

• Reorganisation and customization of “toolbars” holding
icons invoking application functions

• Alteration of layout and positioning of panes holding
working documents, indexes of these documents, menus
and toolbars

• Installation and configuration of “plugins” offering ex-
tensions to the application’s function (for example, the
ability to work with different kinds of document, or inte-
grate with a particular kind of remote service)

• Others

Whilst this is a form of “high water-mark” in terms of
configurable systems, it falls short of what is required for
Inclusive Design. There it is essential that very many aspects
of an application be modifiable to meet diverse user needs.
For example, users with low vision will require quite large
type fonts, and may require unusual color contrast; users
who do not read well may benefit from rarely used content or
controls being suppressed or moved to subsidiary screens. In
general, Inclusive Design requires that, as much as possible,
all aspects of a user interface be subject to configuration.

In addition to these drawbacks to configuration systems,
the reach of the system itself falls short. Here are some kinds
of configuration which are desirable, and also capable of
expression in a system such as Infusion IoC:

• Replacing application-wide, a control with a particular
function by one with the same data binding function
but different presentation and mode of operation — for
example, a numeric bounded range presented with spin
buttons replaced by a linear slider

• Changing interaction idioms over domains with a partic-
ular geometry — for example, items displayed in a linear
list which are navigable by means of arrow keys might
be customized to allow navigation to wrap from the top
to the bottom of the list, or else to “stick” at the extremes
of the list

• Reformulating the workflow of portions of an application
so that multiple controls displayed in a single, complex
dialog are replaced by a linear sequence of simpler steps

The customization we are seeking also aims at some
broader values —

• To make it as easy as possible to transport customisations
from one environment or “application” to another whilst
preserving as much semantic meaning and function as
possible1

• To allow as much customisation as possible to proceed
by direct manipulation in context — that is, by a modal
interaction or otherwise — to allow the customization of
a UI element to be achievable by an operation directly
performed on the element itself, rather than in a distant
and separately developed part of the UI

• To achieve this level of configurability with no extra ef-
fort on the part of developers — that is, without requiring
them to plan up front for the specific axes of configura-
bility which the resulting application offers2

These broader values are still distant, but we believe they
are only achievable through development organised on the
principles we have described for our system, relying on some
key choices:

• Expression of customization as well as application struc-
ture in a declarative form based on transparent state —
for which a good model is the state-based JSON dialect of
JavaScript, highly amenable to transformation and trans-
mission

1 This goal is a key goal of one of the major partners of the Fluid Project,
the Global Public Inclusive Infrastructure (GPII)[15] which aims to
deliver universal accessibility (and hence universal customization) for all
applications, mediated by means of globally available personal profiles held
in a cloud-based system
2 This is a goal specifically defeated by “object-oriented” methodologies
which typically cast amenability to a particular form of configuration in
terms of derivation from a previously formulated interface or base class.
New such axes cannot be introduced without rewriting existing code.

• Interpretation of customization as well as application
structure in a context-aware semantic — where each
configuration item is not only context-aware but also
context-forming — that is, forming a context guiding the
interpretation of further items.

The conjunction of customization with application struc-
ture in these two goals suggests, as we believe, that a fur-
ther key element in achieving the goals is the specification of
what we call application structure in the same terms as those
we cast what we have called customization. This conjunc-
tion has been seen already in configuration-based IoC sys-
tems such as Spring and Guice, but so far only in thin layers
representing the outermost and grossest layers of application
function (and hence those of less immediate interest to end
users) and not in a suitably context-aware way.

3.3 Scale of Potential Benefits

A landmark paper assessing the scale of benefits that might
be expected from a new programming methodology or tech-
nology was Brooks’ “No Silver Bullet” [11] of 1986. In it he
makes the crucial distinction between essential complexity
(the complexity inherent in the specification of a particular
task to be met by software) and accidental complexity (the
complexity which the methods and technologies used in the
solution add to the task). Through various considerations,
Brooks concludes that it is unreasonable to expect more than
one order of magnitude in efficiency improvements through
a change in methodology. We consider through arguments
here that his conclusions are pessimistic and we should ex-
pect that very much greater improvements are possible.

3.3.1 Broadening of the field and redundancy

The number of practicing software engineers may have ex-
ploded more than 100-fold since the 1980s when Brooks was
writing. The paradox of this huge explosion of the discipline
is that rather than driving the satisfaction of differing needs,
(the “one size fits one” of Inclusive Design), the average
software practitioner finds him/herself mostly involved in
makework, integration tasks, or duplicating numerous small
pieces of work that have already been performed by his/her
peers. This is nowhere more true than in the field of web ap-
plications, where millions of apparently very similar widgets
and interactions are backed by thousands of different hand-
crafted workflows written in standard procedural logic.

The natural economics of the field will gradually improve
this situation over time, as standard frameworks and tech-
nologies such as jQuery and HTML5 displace their com-
petitors, but this does not obviate the fact that this mas-
sive redundancy of effort harbours the possibility for great
increases in efficiency — at least an order of magnitude
through this cause alone.

One reason Brooks may fail to consider the power of the
redundancy argument is that at the time of writing, the ma-
jority of the work done in the field was still of the type cate-

gorised as “deep” in section 3.1. That is, this was specialised
work in the construction of artefacts such as operating sys-
tems, IC design, compilers, and numerical algorithms pri-
marily of interest to computer scientists. Because of more
tightly defined requirements, and greater variation in deliv-
ery environments, less of the redundancy across projects of
this kind is likely to result in realisable savings.

3.3.2 Order of essential complexity argument

Brooks accepts that the methods of his day (including the
then still nascent object orientation) imply a superlinear scal-
ing of problem complexity with respect to problem size.
However, without good reason, he ascribes all of this su-
perlinear scaling to the domain of “essential complexity”
rather than “accidental complexity” — to quote, “Many of
the classic problems of developing software products derive
from this essential complexity and its nonlinear increases
with size.”. He makes no references to superlinear scaling de-
riving from accidental complexity but instead seems to treat
accidental causes as operating simply through proportional
effects. In our section 1.2.1 considering the effects of depen-
dency in software design, we have presented several causes
through which superlinear accidental complexity is certain,
using current methods in software technology, and we are
aware of many more. Until the field as a whole has identified
and removed all perceptible causes of superlinear accidental
complexity, Brooks’ assertion that the success of software
engineering is limited by essentials is not tenable. So far, ar-
guments in the literature that make direct quantitative asser-
tions about the order of accidental complexity which could
be expected from following a particular software model or
methodology are not common.

4. How Infusion IoC is Used
The configuration for our IoC system is issued in two
kinds of JSON structures, known as defaults and demands
blocks. This configuration is static, in that it is issued di-
rectly upon loading of the containing JavaScript files, and
does not change over the lifetime of the application. A dif-
ferent value for defaults/demands constitutes a different ver-
sion of the application or framework in question. Defaults
and demands blocks are governed by a well-defined gram-
mar, although at various points in the “syntax”, the content is
unconstrained, to allow arbitrary application structure to be
expressed. The named units of composition described by the
grammar are named “components” although these need not
correspond to the traditional concept of a “UI component”
or “widget”.

The examples presented here show the syntax supported
by the version 1.4 release of Fluid Infusion, of September
2011. Since the Infusion IoC system is still under develop-
ment, future versions of Infusion will feature different sup-
port, although the basic syntax presented here is expected to
remain essentially stable.

fluid.defaults("fluid.uploader.multiFileUploader", {
gradeNames: "fluid.viewComponent",
queueSettings: {

fileSizeLimit: 20480,
},
...
components: {

strategy: {
type: "fluid.uploader.progressiveStrategy"

},

fileQueueView: {
type: "fluid.uploader.fileQueueView",
options: {

model: "{multiFileUploader}.queue.files",
uploaderContainer: "{multiFileUploader}.container"

}
},

...
}

}

Figure 2: Sample of a defaults block

4.1 Defaults and Components

A defaults block sets up a default set of options for a com-
ponent, as well as defining its immediate composition struc-
ture in terms of subcomponents and other non-component
material. A run of the IoC system may be triggered by a
call to a concrete JavaScript function which directly or in-
directly instantiates one or more components in accordance
with this configuration, creating a component tree. Compo-
nents are instances, analogous to object instances in an OO
system but differing in a number of ways. Points of simi-
larity are that components are packages of related data and
functions (methods) — differences are that components are
considered freely addressible as JSON structures, and are not
derived from either classes (in the OO sense) or a prototype
hierarchy (in the JavaScript sense).

Some roles for components in our system are as follows:

• A generalised “unit of computational work”

• An actual “widget on the screen”

• The result of a decision about an implementation strategy

• A context for further such decisions

• A named unit of scoping where state may be looked up

Figure 2 shows part of the defaults structure for a compo-
nent fluid.uploader.multiFileUploader implement-
ing the UI of a progressively enhanceable Uploader widget.
Parts of the configuration similar in nature to that shown are
omitted with ellipses. Note that the names of components are
qualified names held in a (single) global namespace. Whilst
this top-level component is a view component in the MVC
sense, subcomponents further down the tree will in general
have more abstract functions and not be bound to the view.

4.1.1 Grades

Firstly, the component announces its grade — grades are
forms of types but a specific conception based around com-

position of JSON documents rather than having a focus on
runtime data structure or substitutability as in OO. This com-
position is operated by merging the contents of multiple
documents which are given the semantics of aligned state.
This is a natural operation on the JSON model of state,
as canonically implemented by standard utilities such as
jquery.extend(). This is closely related to our concep-
tion of transparent state discussed in section 4.3, and conse-
quences of this alignment are discussed further in 4.3.3.

The primary purposes of Infusion Grades are to i) fix the
signature of the component’s creator function, and ii) to set
up any special semantics to be applied when building up
component specification through merging of JSON struc-
tures. This latter amounts to a light schema applied to the
JSON structure of the component’s options which is other-
wise free-form (e.g. in this case, the queueSettings sec-
tion). There are currently only 5 grades built in as primi-
tives the Infusion system itself, named littleComponent,
modelComponent, eventedComponent, viewComponent
and rendererComponent, although in fact any component
may act as a grade through its defaults structure.

In this way, we create a model for types as documents
which is crucial to the reduction of all application structure
to a declarative form. New types can be created by simply
supplying new documents to the system, and the effect of
combining types, often so problematic in the OO world as an
unclear pattern of multiple inheritance can simply be under-
stood in terms of combining documents. The way is paved
for end users to engineer the effect of creating their own
“types” using straightforward authoring tools, bypassing the
traditional “gatekeepers of state”, the developers.

4.1.2 Subcomponents

The view in Figure 2 shows 2 subcomponents configured for
the top-level component, which are named strategy and
fileQueueView. When the component is instantiated, the
subcomponents will be constructed by the system and as-
signed as top-level members of the overall component with
these names. An important aspect of this aggregation system
is that, since the subcomponents are resolved and instanti-
ated by the framework, there is no necessary induction of L-
dependency (see section 1.1) of a supercomponent on a sub-
component by this form of “has-a” relationship as there is in
classical OO systems. In classical OO, this dependency is in-
duced by constructional responsibility for the subcomponent
by the supercomponent, which here is absent. Indeed, third
parties may freely contribute additional subcomponents, or
modify or resolve away the subcomponents drawn up in de-
faults blocks, without necessarily disturbing the operation of
the supercomponent, as we will show in section 4.2 on de-
mands blocks.

The subcomponents here are described by type names
— these are function names in the same space as the super-
component name "fluid.uploader.multiFileUploader".
Note that these need not correspond to the names of actual

functions globally registered into the system. In this case,
"fluid.uploader.fileQueueView" does indeed corre-
spond to such a concrete function, whereas "fluid.
uploader.progressiveStrategy" does not. The latter
name is supplied as a function name which will enter func-
tion resolution as described in section 4.2. This contrast
may be compared to the contrast between interface names
and concrete class names in a classical OO system, in that
the latter are expected to be directly instantiated, and the for-
mer are not — the situation is not directly analogous since
in Infusion IoC there is no necessarily induced “is-a” rela-
tionship between a function name entering resolution and
the concretely resolved name used for instantiation. This
is a consequence of the fact mentioned in the previous para-
graph, that a subcomponent need not, and in most cases does
not, impose any direct contract on its supercomponent.

The typical absence of this upward contract in component
hierarchies driven by Infusion IoC is one of the crucial ways
in which our system improves the L-dependence structure
of a design. By removing these “dependence arcs” from the
graph, its geometry is pushed further towards the right-hand
end of the diagram in Figure 1, representing designs with a
flatter, more scalable dependence structure.

4.1.3 Context Expressions and Scoping

The subcomponent fileQueueView which is more con-
cretely defined in Figure 2 includes some configuration us-
ing a special syntax, e.g. the string "{multiFileUploader}.
container". This type of expression is used extensively
within IoC, referred to as contextualised EL expression or
path expression3. The initial section within braces refers to
the name of a context, actually resolving onto a particular
component in the tree that will instantiate, and the remainder
of the expression is interpreted as a path within that compo-
nent.

A component can be matched via the context portion
of such an expression through a few routes. In the cur-
rent system, a component, once instantiated in a compo-
nent tree, gives rise to either two or three context names
which can match against such a name within braces, e.g.
multiFileUploader in this case. Considering as an ex-
ample, the context names formed by the subcomponent
fileQueueView above are as follows:

• The fully qualified name of the concrete component as in-
stantiated (in the above case, fluid.uploader.fileQueueView)

• The final segment of the fully qualified name (e.g.
fileQueueView)

• The subcomponent’s name within its parent, if any (in
this case, also fileQueueView).

3 The use of expression here is slightly misleading since in fact no expres-
sion elements (operators, variables, etc.) are permitted in these strings. The
usage of “expression” has been inherited from other environments, such as
JSPs, ASPs, etc. where a full expression language was provided for such
string-encoded value references.

Such context names are considered in scope from a site of
resolution, for example, the instantiating fileQueueView

component above, if they match a component which is ei-
ther an ancestor (container) of the component holding the
resolution site, or if they are a sibling of such a compo-
nent. Therefore, in the simple case above showing just three
components, every component in the tree is a potential site
which may match the context name multiFileUploader

demanded from the configuration of fileQueueView— al-
though this name in practice clearly matches the root compo-
nent. Figure 3 shows the components in scope in a more gen-
eral case — the most darkly shaded component, numbered
0, is the resolution site and the component currently being
instantiated by the system, and the more lightly shaded com-
ponents, with higher numbers, are the components which
are considered in scope for forming context names, with
the number indicating the priority order. Components with
lower numbers will “hide” scopes formed by components
with higher numbers, as in the traditional rules for operating
nested scopes in programming languages.

4.2 Demands Blocks

Function names such as fluid.uploader.progressive

Strategy and fluid.uploader.fileQueueView that ap-
pear as subcomponent type names in Figure 2 ultimately
give rise to concrete function invocations by the Infusion
IoC system. The crucial capability of the system to meet
the kinds of configuration needs we described in section 3.2
is achieved through the function resolution process — the
designation of the particular function invocation required, as
appearing in subcomponent definitions and in several other
places in the framework is transformed by the intercession
of rules which transform the function invocation from one
form into another. This transformation is specified by issu-
ing JSON structures known as “demands blocks”, a partner
to the defaults blocks of the previous sections.

Whereas defaults blocks specify the basic skeleton of
the component tree, demands blocks intercede in a context–
aware way to transform the elements of this skeleton to meet
the particular needs of the user in a particular context. This
intercession is the analogous of the advice action of Aspect-
Oriented Programming that we considered in section 2.2.

4.2.1 Simple Use of a Demands Block

A very simple example of a demands block is shown in fig-
ure 4. This shows an “advice” applied to the subcomponent
strategyof type fluid.uploader.progressiveStrategy
that we saw in diagram 2. The function fluid.demands

takes three arguments:

demandedName — a string, the original function name
demanded by the configuration site being resolved

contextNames — a string or array of strings, the context
names which must be visible for this demands block to

be activated in order to resolve the demanded function
names

disposition — a JSON structure describing the resolution
to be performed (“advice”) — as well as resolving the
demanded function name, this may also describe rules
for transforming the function arguments.

In this case, the disposition simply replaces the demanded
function name (which as we mentioned in section 4.1.2
in fact had no implementation) with another. In a context
where the context name fluid.uploader.html5 can be
seen, this demands block directs that the function name
fluid.uploader.html5Strategy be used in place of the
original name fluid.uploader.progressiveStrategy.
The rules for scoping are the same as those shown for value
resolution in Figure 3 — components which do not fall
in the numbered, lightly shaded region of the component
tree relative to the resolution site are not considered for
the purposes of forming contexts for function resolution by
demands blocks.

fluid.demands("fluid.uploader.progressiveStrategy",
"fluid.uploader.html5", {

funcName: "fluid.uploader.html5Strategy"
});

Figure 4: A simple demands block

4.2.2 A More Complex Demands Block

As well as the ability to redirect the dispatch of the required
function name held in the demands block, the arguments to
the function call may also be freely interspersed, replaced,
or merged with material drawn from elsewhere in the tree.

fluid.demands("fluid.uploader.local", "fluid.uploader.html5Strategy", {
funcName: "fluid.uploader.html5Strategy.local",
args: [

"{multiFileUploader}.queue",
"{html5Strategy}.options.legacyBrowserFileLimit",
"{options}"

]
});

Figure 5: Sample of a demands block

In Figure 5, the disposition entry now contains an en-
try args in addition to funcName. This block directs that
in addition to resolving the demanded function name onto
a particular concrete implementation fluid.uploader.

html5Strategy.local, its argument list is also to be re-
placed. The syntax used for argument lists, in addition to
allowing literal JavaScript constants, also allows any com-
bination of values using the value resolution syntax that we
saw in section 4.1, using the same resolution rules.

This adds a new capability to programming. Facing a
function with a signature actually unknown to the calling
site, three argument values are “fished” out of the environ-
ment, the structural scopes surrounding the call site, in order
to meet its contract. This adds a capability for loose coupling

Figure 3: Scope Visibility and Priority for Context Resolution

that was not previously available — a completely unrelated
third party may now intercede between any function call site,
and any other function implementation site, and cause the
caller and callee to be conformed together, irrespective of
any mismatch between the actual function name as well as
any mismatch in the function signature.

This ability to “fish” such values in order to meet unan-
ticipated (by either the caller or callee) function contracts re-
quires a different model for how state is made available in a
program design. In particular, it argues against the “data hid-
ing” paradigm that is recommended by object-orientation. In
the next section, we will see how the antithesis to this ap-
proach, one that we name the use of transparent state, can

be made the basis of a workable progamming model, whilst
still meeting the goals which originally seemed to motivate
the use of data hiding.

4.3 The ChangeApplier and the conception of
transparent state

It is a key requirement to operate demands blocks, that
the component tree is defined in terms of what we call
transparent state. The meaning of this is something similar
to the prescription of RESTfulness[16] for web applications
— that the state of the system is indexed by path-segmented
strings in a public and stable namespace. This feature arises
simply and naturally when JSON-encoded data is accessed

from the JavaScript language, but tends to be obscured when
the traditional recommendations in favour of data hiding are
followed.

4.3.1 The “State API”

One way of viewing the adoption of transparent state, is in
terms of a “moral API” which is considered to be always in
operation when state is being addressed. We use the locution
“moral API” here since in contrast to traditional formula-
tions of an API, the most important aspect which is fixed
by the standardisation is not the names and signatures ap-
pearing in the API, but the underlying semantic. We present
a few embodiments of such an API in the wider world, as
well as a few which appear in Infusion’s API, but note that
the commitment to transparent state means that there is wide
latitude in the specifics of the API. As long as an API pro-
vides appropriate access to some body of underlying state,
it is always possible to provide adaptors that allow code that
uses any one applicable API to operate with whatever API
is actually provided. In the middle maturity of the Infusion
system, the use of any explicit API in code will disappear, to
be replaced by a declarative syntax, and in the full maturity,
the syntax itself will disappear to be replaced by graphical
or other tools for direct manipulation of the application.

In terms of our analogy with the HTTP REST verbs,
which in the HTTP protocol are named POST, GET, PUT,
and DELETE, the members of this API can be considered as
representatives of the CRUD (Create, Read, Update, Delete)
paradigm, originally proposed by James Martin[17] as an
approach towards the management of persistent state. The
extra element which REST adds to the original conception
of CRUD is the insistence that the data items addressed
by the state operations are indexed by stable, public, path-
segmented strings.

We argue that this idiom is appropriate for the manage-
ment of all mutable state (and access to immutable state)
within an application, rather than just operated across pro-
cess or machine boundaries as part of the original conception
of CRUD/REST. Certainly, the JavaScript language, by pro-
viding the native idiom for addressing freely-formed JSON
structures as a language primitive, makes this conception
extremely natural — the path-segmented stable strings we
mentioned are simply the natural member access operators
provided by the language.

Using this RESTful approach to all application state, how-
ever, implies that all of this state be made available “as
if” represented by a single, giant lazily loaded JSON struc-
ture. Whilst future developments in the JavaScript language
(proxies, arriving in ECMAScript Harmony[13]) do promise
to make this a practical possibility, the constraints of the cur-
rent JavaScript language imply that access to state which is
not directly embodied by a concrete and directly available
JSON structure of the right kind needs to be mediated by the
use of an old-fashioned API.

Such APIs are present in Fluid Infusion, as part of a pack-
age of data binding primitives in the core framework as well
as a particular implementation known as the ChangeApplier
which mediates mutation of state. Figure 6 shows the equiv-
alence between actions performed directly in the core lan-
guage, the ChangeApplier, and HTTP REST as a point of
comparison.

4.3.2 Addressing the goals which appeared to motivate
data hiding

Data access policies We argue that adoption of the trans-
parent state model makes many of the goals which appeared
to motivate data hiding, paradoxically, easier rather than
harder to meet. An interesting representative of these goals is
secured access to data. Many applications operate a security
model, defining rules and predicates which specify which
users of the application should be permitted to read, mod-
ify, or perform other operations with respect to which data
that the application manages.

A very popular framework for managing such security as-
sertions is Spring Security[21], a subproject of the Spring
IoC framework mentioned earlier as the foremost popular
embodiment of IoC ideas in the Java community. Spring Se-
curity gains a great measure of its power through reducing
security assertions about access of principals to data and im-
plementations to a declarative form — just the same reduc-
tion that motivates our own work. However, the power of
Spring Security and similar frameworks to express policy is
seriously hampered by a necessary lack of insight into the
identity of data which is a consequence of the OO model.

An example where transparent state aids access policy
Here is a real-world example of a desired security policy that
arose in the context of work on one of our partner projects,
the CollectionSpace Project[14]. This project operates a re-
lational model, connecting together data seen as records con-
nected by relations. The required security policy expressed
that permission for a principal to modify the relation be-
tween two records should be derived from the permission
held on the records which it related. Specifically, a principal
should only have permission to modify a relation between
two records if they already held permission to modify the
contents of both records separately.

It’s clear that without a stable and global identity (ex-
pressed, preferably, as a simply-structured string) address-
ing each record in the system, it is impossible for such a
security policy to be expressed in any declarative form —
and since Spring Security and suchlike frameworks have no
place for such an addressing scheme, they cannot express
such a policy at all. This requires such a policy to fall back
to non-declarative schemes and be expressed literally in ap-
plication code, therefore putting it out of reach of end users
of the system to inspect and modify.

This example shows a case where the adoption of a trans-
parent state scheme positively assists rather than hinders the

JavaScript native Infusion API HTTP REST
Read var x = root.path1.path2; var x =

accessor.get(root,

"path1.path2")

GET root/path1/path2

Write root.path1.path2 = "value"; accessor.set(root,

"path1.path2", "value")

OR
applier.fireChangeRequest({type:
"ADD", path: "path1.path2",

value: "value"})

PUT root/path1/path2

value

Delete delete root.path1.path2; applier.fireChangeRequest({type:
"DELETE", path: "path1.path2"})

DELETE

root/path1/path2

Figure 6: Comparison of syntaxes for direct access to mapped state

expression of policies controlling capabilities by users of a
system to access or modify state.

Maintaining invariants and Serialization Another impor-
tant category of goals motivating data hiding is maintain-
ing data integrity. Often, state comes together with a set
of invariants or validation rules which must be checked and
maintained whenever state modification is attempted. In the
OO paradigm, these invariants are traditionally maintained
by logic embedded in application code packaged as methods
(private or public) of the objects holding the state to which
the invariant refers.

Having such rules locked up in application code carries
similar risks to those just mentioned. A particular difficulty
this creates is providing the application function of serial-
ization — taking the set of application state and writing it to
a serial form such a disk file or network stream, or this pro-
cess in reverse. Serialization in an OO system always meets
the design risk represented by the packaging ensuring an ob-
ject’s invariant protection as a direct part of the object’s own
API. During the deserialization process, this protection must
be “somehow” suspended, this “somehow” being directly at
odds with the OO philosophy. As the object tree is built up
in memory, it is quite likely that the invariants protecting
validity of the state will be violated at intermediate points
where the object tree is incomplete — especially if these in-
variants relate to relations amongst objects. In semi-dynamic
environments such as Java, object serialization needs to be a
specialised platform/language facility, and is often hard to
control. In static languages such as C++, serialization poses
a double burden on developers — having designed an object
hierarchy once, a separate design effort needs to be mounted
to serialize it.

Invariants through ChangeApplier guards A system which
separates state from behaviour, as we recommend, deals with
such issues trivially — state serialization and deserializa-
tion are performed directly by the primitives provided by
the base language, e.g. in JavaScript, the JSON.stringify

and JSON.parse. Alternative serializations are also trivial,

either through transforming the JSON tree, or by using the
iteration primitives of the language to drive an alternative
serialization. The capability to ensure invariants (or not, de-
pending on whether they are required) is mediated by mech-
anisms held in the State API we described earlier. In particu-
lar, the machinery held within the ChangeApplier allows the
registration of guards, listeners to the change events pass-
ing through the system attempting to honour the modifica-
tion of state requested by the user. If an event violates the
invariant embodied in a guard, it is vetoed — the event is
discarded and the state modification does not occur.

The configuration of guards is defined in a further doc-
ument, itself following the transparent state model, aligned
with the primitive state. This document defines, or can be
directly derived from a schema for the primary state. This
continuation of the “types as documents” model which we
touched on in section 4.1.1 on grades continues to put power
in the hands of users to prescribe behaviour by modifying
documents, rather than enfranchising developers by putting
power in the hands of authors of application code.

Transactionality A closely related issue to maintaining of
invariants for data integrity, is the requirement for transac-
tional updates to state. In a system with transactional up-
dates, it is not possible to observe the effects of partially up-
dated state during a long sequence of coordinated updates
— instead, outside the transaction, the updates appear to be
applied atomically. This is the kind of issue that is not typ-
ically handled at the language level in an OO system, but
instead arises as part of a particular object-relational map-
ping (ORM) technology which maps the state of objects in
a running system onto persistent state held in some form of
database layer.

By adopting a transparent state model, in conjunction
with “change application” machinery such as the ChangeAp-
plier, transactional semantics can be supplied in a standard
way for in-memory objects, matching the semantics of their
persistent analogues in the database layer. In figure 6, the ar-
gument to the method fireChangeRequest can be seen to

be a piece of transparent state in itself — in fact, a change
request object which is the natural form of entries in system
following the transaction log pattern. The implementation of
the ChangeApplier is capable of applying grouping to this
stream of events, ensuring that units of change represented
by a group forming a transaction are either seen to be applied
completely (atomically) or not at all, in the case of a guard
(invariant) failure or other error.

4.3.3 New capabilities through transparent, mapped
state

The transparency provided by stable addressing of state al-
lows more powerful reorganisations of data and the oper-
ations performed on it. Examples include the bidirectional
programming framework of Pierce et al.[18], in which state
is “lensed” through information–preserving transformations.
The greatest difficulty with these schemes in practice is the
alignment of this state before and after the transformation —
a transparent state model performs this alignment intrinsi-
cally and naturally. Another example is work involving par-
allelisation of irregular algorithms[19]. An important prereq-
uisite for this kind of task transformation is that units of work
are divided up into stably named elements embedded in a
graph, without distant side-effects. This is just the partition-
ing of work units presented by the IoC component tree and
its indexing model.

4.3.4 Transparency applied to component trees

Since component trees are not in general considered muta-
ble, this potential for global reference raises few problems
during the instantiation process itself. The parts of the com-
ponent trees which hold state which is considered mutable
after instantiation are designated as models and access to
them is mediated by a companion component known as a
change applier. This, whilst preserving the transparency of
addressing through path strings, restores these virtues which
are intended to be achieved through encapsulation and data
hiding in the object–oriented model — atomicity of update,
consistency through verification of invariants, and a pub-
lish/subscribe model for notification of changes. A feature
known as proxies which is upcoming in the ECMAScript 6
specification[13] will enable this package of guarded access
to be applied to state accessed through the natural semantics
of the language.

5. Case Studies in Implementation
5.1 Case study — Progressively enhanced Uploader

component

Whilst the Infusion IoC system to some extent allows
us to get beyond traditional conceptions of “component–
oriented” or “object–oriented” applications, it is an impor-
tant stepping–stone in providing value to both users and de-
velopers of the system alike to develop packages of function-
ality that fill well-defined, though flexible functions. This

flexibility is also a stepping-stone to meeting the fuller goals
of Inclusive Design.

5.1.1 Goals for the Uploader Widget

An application that we have worked on recently and present
here is that of a Uploader “widget”. This widget assists
users to select one or more files from their local filesys-
tem, and to supervise the process, with feedback, of trans-
mitting them via HTTP to a web server. This implementa-
tion is a challenge due to the broad range of technologies
potentially available in the browser environment to meet this
need, stretching from the very latest versions of HTML5 in-
teractions delivered in this year’s Firefox 4 browser, back to
the extremely basic support for uploading single files pro-
vided by HTML 4 in the 1990s. A crucial goal of the up-
loader is to provide a single, concrete entry point to the de-
veloper/integrator, whilst automatically sensing the capabil-
ities of the environment, registering the user’s preferences
and selecting an appropriate implementation strategy in a
transparent way, in accordance with the goals of progressive
enhancement.

Whilst the Uploader presents a straightforward and sta-
ble entry point to users as a simple function call, under the
surface it uses IoC to intelligently adapt to the combination
of the capabilities of the user’s browser and their expressed
preferences. At the same time, this implementation can be
extended to deal with unanticipated technologies and envi-
ronments, without modification of either the implementation
or user code. These requirements of adaptibility to both con-
text and preferences are a proxy for the wider goals of Inclu-
sive Design in more ambitious problems.

5.1.2 From the integrator’s point of view

In its simplest possible form, the widget can be used as
shown in Figure 7 (assuming inclusion of appropriate Fluid
and jQuery[22] JavaScript files).

<html>
....

<form method="post" enctype="multipart/form-data"
class="myUploader">

<input name="fileData" type="file" />
<input type="submit" value="Save"/>

</form>
<script type="text/javascript">

fluid.uploader(".myUploader");
</script>

</html>

Figure 7: Sample instantiation of an uploader component

In this simple form, a call to a concretely named JavaScript
function is targetted at a block of markup holding a standard
(HTML4-style) file upload form. Since no further configu-
ration is supplied, the IoC machinery behind the function
call will detect whether a Flash version 9, Flash version
10, HTML5 (Firefox 3.6-style) or Binary XHR-compliant
HTML5 style (Firefox 4 or Chrome) uploader is the most
appropriate form, inject appropriate markup, and construct

a suitable implementation. Should none of these choices be
workable, or if JavaScript is not enabled in the browser, the
markup will be left as it is and still provide basic functional-
ity for selecting and uploading a file.

5.1.3 Benefits provided by Infusion IoC

The variant enriched implementations all present a common
interface, allowing selection of multiple files, feedback of
individual and overall progress as well as pausing or can-
cellation of operations. Due to the power of IoC, this im-
plementation code, as well as several other sections of the
implementation are reused across the variants as “invariant
sections” of the component tree. Even this relatively com-
pact problem would have been hard to address through stan-
dard “object–oriented” techniques — assembling a class hi-
erarchy mapping this area would have run into two principal
hazards:

Firstly, the pattern of code reuse, with multiple, mutually–
overlapping pieces of implementation shared between the
configurations would have been hard to map onto a tradi-
tional inheritance hierarchy. Even were this done, it would
be hard to be assured that in the face of future variation, the
mapping would remain stable. In Infusion’s IoC implemen-
tation, since essentially all implementation which is in code
is packaged in a form equivalent to that of free, context-less
functions, it is easy to be assured that it can be recomposed
by means of demands blocks into a new and suitable ar-
rangement where implementation can be common.

Secondly, the simple point of entry in terms of a stable,
context-less function fluid.uploader would have been
harder to achieve. Given the delivered implementation is
polymorphically variable, this would either have required
concrete type-names to be mentioned in a “constructor”,
or the use of some suitable “factory method” on an al-
ready existing source of implementations. . . whose construc-
tion would represent the same problem, pushed back one
level.

Say that, for example, despite the now obsolescence of
Google’s “Gears” technology for native browser functions,
a user wanted to extend this Uploader implementation set to
support it. This could be done without modification of either
the user entry point fluid.uploader or the implementa-
tion files. In fact, all the demands blocks and implementa-
tion functions required for, say Gears, or some unanticipated
future technology could be scoped to a JavaScript file which
is not even delivered to users with user agents not support-
ing this technology. This kind of “file inclusion-based poly-
morphism” is hard to package with object–oriented tech-
niques where constructors delivering implementations typ-
ically need to appear within the delivering code.

5.1.4 Use of demands blocks in Uploader
implementation

Figure 8 shows schematically the structure of some of the de-
mands blocks implementing the Uploader widget. Each ar-

row linked with a circle along its length represents a contex-
tual resolution — a choice made by the instantiation system
based on the context provided by constructions which have
already concluded. At the top of the diagram are raw context
tags decoded by a direct inspection of the capabilities of the
user agent — fluid.browser.supportsBinaryXHR, etc.
Below this level in the tree is the point at which user config-
ured material may be used to guide resolution, for a particu-
lar instantiation of the uploader, onto a particular strategy to
be used. In the absence of this, the default demands structure
will proceed by a default algorithm onto the uploader strat-
egy tags, fluid.uploader.html5etc. Below this level, the
resolution continues to cascade onto particular elements of
the uploader implementation, guided by the strategy tags. At
each level of demands resolution, there is scope for further
demands blocks contributed at the user’s request, or an in-
tegrator or other party, to intercede, or in AOP terminology
to “advise” the construction of subcomponents, by fetching
data or implementation sourced from other parts of the up-
loader’s tree — or even, from other parts of a wider compo-
nent tree. Whilst the uploader is packaged in such a way that
it is usable by standard JavaScript citizens as a simple func-
tion call, the full power of the IoC system together with the
uploader is only realised when the entire implementation of
an application is delivered as a single, giant interconnected
series of demands blocks — with demands resolution given
the power to roam freely and fetch contextualised data to be
delivered anywhere within or among elements which would
formerly have been seen to be opaque, monolithic “compo-
nents”.

Whilst Figure 8 resembles a standard UML diagram in
some respects, the meaning is somewhat different. This dia-
gram shows a schematic for data structures which might ex-
ist in certain histories of the system, rather than those which
will or do exist, statically. It is this contextual awareness
at each point of the system that allows it to be easily ex-
tended for new cases, with instantiation guided along new
paths, made visible by new demands blocks being brought
into scope.

5.2 Wider case study - The CollectionSpace
Collections Management System

The CollectionSpace project[14], led by the Museum of the
Moving Image in New York, is producing collections man-
agement software for the use of museum curators and other
staff. The project is using the current version of the Infu-
sion IoC system, as described here. This project is proving
an excellent ground for exploring the benefits in adaptible
and declarative software that the IoC approach can offer.
The user interface for this application consists of few but
very detailed pages, containing many hundreds of widgets,
reflecting the level of detail of the specialised knowledge
operated in the domain of exhibit curation. As suggested in
the previous section, the entire UI for this application is im-
plemented as a giant, single-rooted tree of components gov-

Figure 8: Illustration of component tree instantiation for Uploader widget

erned by the underlying graph of demands blocks. This tree
comprises components such as the Uploader and numerous
others, instantiated by IoC. One immediate benefit of this
approach for users is the easy adaptibility of the interface in
a schema-driven way. Rather than relying on development
support to orchestrate changes required by local institutions
which may have very widely differing requirements, these
can instead be enacted by editing simply-structured JSON
files or in many cases can be inferred automatically from a
description of the application’s schema.

Component markup, similar to component state, is not
locked up in implementation files but “out in the open” in
unpolluted and standard HTML files, reskinning of the appli-
cation similarly can be performed without development sup-
port, using standard HTML editing tools. These kinds of re-
skinning comprise, but go beyond that possible through sim-
ple CSS effects. Directly editing HTML enables widespread
reorganisation of the layout and content of the markup op-
erated either by individual components or entire pages. This
composition of markup is performed by the Fluid Renderer,

an engine described in more detail in the online references
for the Fluid Framework.

6. Status and Trajectory of the
Implementation

The Fluid group are currently working towards the 1.4 re-
lease of the Infusion system, which is targetted for Septem-
ber 2011. This will be the first public release in which the
described implementation of the IoC system (as well as
the Uploader widget and other components not described
here) will be available. This release is considered to be
in a “sneak peek” mode where API and concepts are not
fully stabilised. Although several of Fluid’s production-
ready components are implemented in terms of this sys-
tem already, the IoC system and framework itself are not
yet considered to have reached a production-worthy con-
dition in terms of stable use by general users. Readers are
invited to come along and inspect our progress, and even
join in, at our github repository held at https://github.
com/fluid-project/infusion . Overall documentation
for the Infusion system, including the IoC implementation,
is held at http://wiki.fluidproject.org/display/

fluid/Infusion+Documentation . Future versions of In-
fusion are roadmapped at http://wiki.fluidproject.

org/display/fluid/Fluid+Community+Roadmaps —
we will continue to stabilise and expand the capabilities of
the IoC system as well as evolving previously implemented
components to defer to it more for implementation. A cru-
cially important, but still very early–stage work package
involves our server-side implementation, Fluid Kettle, an
IoC-driven JavaScript implementation based on the rapidly
developing Node.js framework based on an asynchronous
I/O model. A back-end based on Apache’s CouchDB per-
sistence technology using JavaScript as a query language
will enable a homogeneous development model operating
JavaScript at all tiers of the web application, which is hoped
to bring developments of lowered barrier to entry by new
developers as well as increased mobility of code and imple-
mentation algorithms between the layers.

6.1 Directions for the System

We identify two important future directions and roles for
the system, continuing from our discussion of Brooks[11],
which identifies a number of technical developments which
might have the potential to increase the efficiency of devel-
opment (see section 3.3).

6.1.1 Graphical tools and environments

The categories of graphical programming and environments
and tools which Brooks identifies as crucial are ones which
a constant motivation during the development of the system
has been to facilitate. We expect work in them to be very
fruitful. Brooks criticises the potential of graphical program-
ming on two grounds which might remain relevant today

— firstly that “flowcharts” are a poor abstraction of soft-
ware structure, and secondly that superimpositions of multi-
ple views of a program’s structure are unlikely to arrive at a
properly synoptic view of its function, as one might expect
from the correspondence between a VLSI chip’s geometric
structure and its function.

We argue that the way software is designed must be modi-
fied, precisely to bring about such a correspondence between
structure and function. Such structure must be built around
the data which is being manipulated on behalf of the user, as
well as the direct interface itself which is presented to ma-
nipulate this data. Rather than an abstract flowchart showing
a sequence of operations expected to be performed by the
machine, the user interface itself should be the focus of op-
erations exposed to the user in expressing their intentions.
Until the rules by which the user interface is constructed are
specified in a declarative form open to interpretation by the
system itself, rather than in opaque code only interpretable
to a compiler, the adaptible interface required by Inclusive
Design cannot be constructed (section 6.1.3).

Similarly, organising parts of this adaptible interface di-
rectly around the sources, transformation steps, and sinks
governing the user’s data, brings this most vital part of the
system close to its constituency of users, rather than delib-
erately setting out in the opposite direction as modern rec-
ommendations on data hiding propose. Structuring compu-
tation around data in publically named, structured units (sec-
tion 4.3) also promotes free restructuring of the actual algo-
rithms which operate on it, making it easier to exploit vari-
able availability of computing resources (for example, vari-
able numbers of processors, or variable availability of com-
puting power at different nodes of a client-server architec-
ture).

6.1.2 “Automatic” programming and expert systems

Brooks defines automatic programming as “generation of a
program for solving a problem from a statement of the prob-
lem specifications”. He cites Parnas [12] who reinterprets
this goal as follows: “In short, automatic programming al-
ways has been a euphemism for programming with a higher-
level language than was presently available to the program-
mer.” Higher-level languages to date have been constructed
in two directions. Firstly, “bottom-up”, building on the base
of lower-level languages in the directions developers con-
sider desirable to increase their expressiveness - for example,
the construction of languages such as C++ and Java from the
base of C. Secondly, “top-down”, deriving from an analy-
sis of natural languages and vocabularies of users the kinds
of computer languages their requirements might intelligibly
expressed in — this motivated the construction of the so-
called “fourth-generation languages” (4GLs) such as MAP-
PER, Clipper, LiveCode, R and S.

Bottom-up language developments often fail to success-
fully deliver more end user needs per quantum of developer
effort, and are usually focussed towards needs in the de-

https://github.com/fluid-project/infusion
https://github.com/fluid-project/infusion
http://wiki.fluidproject.org/display/fluid/Infusion+Documentation
http://wiki.fluidproject.org/display/fluid/Infusion+Documentation
http://wiki.fluidproject.org/display/fluid/Fluid+Community+Roadmaps
http://wiki.fluidproject.org/display/fluid/Fluid+Community+Roadmaps

veloper’s domain. Top-down language developments can be
very successful within particular domains, but fail to build
bridges downwards into the world of underlying developers,
by creating an impenetrable abstraction boundary at the
level of the 4GL language syntax. Only by building a “har-
monious tower of abstractions” as we allude to in section
6.1.3 can we assist both kinds of community to cooperate
harmoniously on the same design, and gain the scalability
benefits needed to escape Brooks’ curse. By building our
system out of the JSON configuration naturally made avail-
able by builtin features of the JavaScript language, we avoid
creating an impenetrable abstraction boundary of this kind,
a boundary on either side of which the stakeholders speak
mutually unintelligible languages.

We have described the similarities between the IoC res-
olution process and the “goal-directed” behaviour of infer-
ence engines such as those used in some expert systems (sec-
tion 2.1). We aim towards a system whereby the “statement
of problem specifications” should simply be identified with
the “program for solving a problem”.

6.1.3 The Crucial Important of Homoiconicity

Many of the benefits of Infusion IoC can be interpreted
from the viewpoint of seeing its JSON dialect composed
of defaults and demands blocks as a Domain-Specific Lan-
guage (DSL) [5] enjoying a crucial property known as
homoiconicity[2]. Homoiconicity is a property of some pro-
gramming languages, in which the primary representation
of programs is also a conveniently expressed data structure
of the language. This property makes it extremely easy to
produce tools which transform “programs” written in this
language into other forms, as well as tools which enable
graphical presentation and development of the program by
developers and end users.

It is a crucial requirement of the goals of Inclusive Design
that bridges can be built between the worlds of software pro-
fessionals and users. Homoiconic characteristics of the base
language are essential to allow a bidirectional transfer of
artefacts between developers and end users who work with
the finished product — and allow these users to work from
effects they see in the finished product back to their causes
and thus conform them to their requirements. Without the
transparency allowed by this bidirectional transfer, inclusive
design becomes uneconomic, since each adaptation of the
software must be pursued by ad hoc development.

In practice, the transfer from the world of software pro-
fessionals to end users involves a tower of increasing lev-
els of abstraction. In order for this transfer to be economi-
cal, the transfers should not be “mutually blind” but allow
some form of harmonised understanding of the transferred
abstraction — that is, there should at no level in the sys-
tem be an impenetrable abstraction boundary, through which
the transfer of artefacts involves a complete loss of mean-
ing. Homoiconicity of the base system is essential to such
a “harmonious tower of abstractions”, stretching from the

low levels out into the world of users. Previous similar sys-
tems cast as DSLs, “Fourth-generation languages” (4GLs),
or code generators (see section 6.1.2) have failed to ensure
this harmonious tower by introducing an impenetrable ab-
straction boundary represented by a language syntax.

7. Conclusion
We have made a case arguing that the longevity of applica-
tion code, as well as the reach of its design space, is greatly
increased by reducing as much of its volume as possible to a
declarative form. A promising model for such a form are the
JSON blocks we have described here, forming the demands
and defaults blocks interpreted by the IoC-driven component
system. We presented the feature of homoiconicity enjoyed
by such code, expressed as natural data structures of the un-
derling JavaScript language, as one of the crucial enablers of
the application flexibility and scalable development required
for Inclusive Design.

As platforms and technologies change, new demands
blocks can weave together with the old to meet new needs,
without fragility in existing implementations. Should
JavaScript and the web themselves cease to become current,
this declarative form is easier to mechanically transform
(following the mentality of LISP “macros”) into forthcom-
ing idioms, than implementations specified in imperative,
sequential code. Such code that is written is packaged in
global functions which are more or less “free”, maximising
the chance that it can be reused in fresh contexts without the
worry of assumptions embodied in hazardous shared state
such as that found in base classes or object instances. Fi-
nally, where expectations and contracts do change over time,
old implementations may be adapted to new clients, and vice
versa, by the interposition of suitable demands blocks, pro-
viding the appearance of new contracts for old.

References
[1] Lakos, J.: Large-Scale C++ Software Design, 1996, Addison-

Wesley Professional

[2] McIlroy, D.: Macro Instruction Extensions of Compiler
Languages, 1960, Communications of the ACM, Volume 3
Issue 4

[3] Chapter 15: “Everyday Inclusive Design”, N. Warburton, in
Inclusive Design: Design for the Whole Population: Edited by
Clarkson, J. et al, Springer (2003)

[4] Fowler, M.: Inversion of Control Containers and the De-
pendency Injection pattern, http://martinfowler.com/
articles/injection.html

[5] Fowler, M., Parsons, P: Domain-Specific Languages, Addison-
Wesley, 2010

[6] Douglas Crockford — The JSON Saga: http://developer.
yahoo.com/yui/theater/video.php?v=crockford-json

[7] Pascal Costanza, Robert Hirschfeld: Language Constructs for
Context-oriented Programming: an Overview of ContextL, in:

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://developer.yahoo.com/yui/theater/video.php?v=crockford-json
http://developer.yahoo.com/yui/theater/video.php?v=crockford-json

DLS’05: Proceedings of the 2005 Symposium on Dynamic
Languages, ACM, New York, NY, USA, 2005, pp. 110.

[8] Malte Appeltauer, et al.: A Comparison of Context-oriented
Programming Languages. In Proceedings of the Workshop on
Context-oriented Programming (COP) 2009 Genoa, Italy, July
7, 2009

[9] J. Lincke, et al.: An Open Implementation for Context-
oriented Layer Composition in ContextJS, Science of Computer
Programming (2010), doi:10.1016/j.scico.2010.11.013

[10] A. J. Albrecht: “Measuring Application Development Pro-
ductivity,” Proceedings of the Joint SHARE, GUIDE, and IBM
Application Development Symposium, Monterey, California,
October 1417, IBM Corporation (1979), pp. 8392.

[11] Brooks, Fred P.: “No Silver Bullet — Essence and Accident
in Software Engineering”. Proceedings of the IFIP Tenth World
Computing Conference (1986): 10691076.

[12] D.L. Parnas: “Designing Software for Ease of Extension and
Contraction,” IEEE Transactions on Software Engineering, Vol.
5, No. 2, March 1979, pp. 128-38.

[13] ECMAScript 6 Proxy proposal: http://wiki.

ecmascript.org/doku.php?id=harmony:proxies

[14] The CollectionSpace Project: http://www.

collectionspace.org/

[15] The Global Public Inclusive Infrastructure http://www.

gpii.org/

[16] Fielding, R.T.: Architectural Styles and the Design of
Network-based Software Architectures, Doctoral dissertation
(2000), University of California, Irvine

[17] Martin, J: Managing the Data-base Environment, Prentice-
Hall, 1983

[18] Pierce, B.C.: Foundations for Bidirectional Programming, or:
How To Build a Bidirectional Programming Language, June
2009. Keynote address at International Conference on Model
Transformation (ICMT).

[19] Kulkarni, M., Carribault, P., Pingali, K., Ramanarayanan,
G., Walter, B., Bala, K., Chew, L.P.: Scheduling Strategies for
Optimistic Parallel Execution of Irregular Programs, SPAA ’08
Proceedings of the Twentieth Annual Symposium on Parallelism
in Algorithms and Architectures

[20] The Spring Framework, http://www.springsource.org/
about

[21] The Spring Security Framework, http://static.

springsource.org/spring-security/site/index.html

[22] The jQuery Framework, http://jquery.com

http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://wiki.ecmascript.org/doku.php?id=harmony:proxies
http://www.collectionspace.org/
http://www.collectionspace.org/
http://www.gpii.org/
http://www.gpii.org/
http://www.springsource.org/about
http://www.springsource.org/about
http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html
http://jquery.com

	The Development and Need for Inversion of Control systems
	The Crucial Nature of Dependency Structure in Software
	Evaluating Physical Design Quality Through Dependence Graphs
	Consequences of Improving Dependence Structure in Static Languages
	Elaboration of the ``brittle base'' problem
	Attempted solutions lead back to the core issue

	Inversion of Control Systems
	Conclusions for scaling of design costs

	Limitations and Extensions to the IoC model

	Relation to other Programming Paradigms
	Link to Goal-Directed Programming
	Link to Aspect-Oriented Programming
	Relation to Context-Oriented Programming
	COP Layering with OOP — Portability Profile
	COP scoping rules
	Implicit formation of layers

	Context of the Solution
	Domain of Validity
	Existing Configurable Systems
	Scale of Potential Benefits
	Broadening of the field and redundancy
	Order of essential complexity argument

	How Infusion IoC is Used
	Defaults and Components
	Grades
	Subcomponents
	Context Expressions and Scoping

	Demands Blocks
	Simple Use of a Demands Block
	A More Complex Demands Block

	The ChangeApplier and the conception of transparent state
	The ``State API''
	Addressing the goals which appeared to motivate data hiding
	New capabilities through transparent, mapped state
	Transparency applied to component trees

	Case Studies in Implementation
	Case study — Progressively enhanced Uploader component
	Goals for the Uploader Widget
	From the integrator's point of view
	Benefits provided by Infusion IoC
	Use of demands blocks in Uploader implementation

	Wider case study - The CollectionSpace Collections Management System

	Status and Trajectory of the Implementation
	Directions for the System
	Graphical tools and environments
	``Automatic'' programming and expert systems
	The Crucial Important of Homoiconicity

	Conclusion

