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DHTML Techniques for an Inclusive Web 2.0
Or

How to Write JavaScript That Doesn’t Suck



Techniques We'll Talk About

• Play nice with others: mashups and portals
– Don't override built-in types
– Namespacing and uniqueness
– Addressing the DOM

• Accessibility
– Keyboard Handling
– Supporting assistive technologies
– State of the standards

• Using toolkits



Mashups

• What's a mashup?
– A combination of data and markup from different sources
– Aggregating content from Web feeds, services, etc.

• Chunks of markup and JavaScript that:
– Share the same DOM
– Are mutually ignorant of the others' existence

• The same technical challenges as in a portal



Playing Nice With Others



Don't Modify Built-in Types

• JavaScript is wickedly dynamic… but use it carefully
• Our changes can effect other programs.
• In JavaScript, you can easily augment an object with 

simple assignment.

myObject.myMethod = function() { }; 



Namespace Everything

• Namespaces will help avoid collisions.
• Encapsulate functionality nicely.
• Provides some documentation.
• How do we do this?
• JavaScript has a global object which holds top level 

functions and global variables.
– Create an object in the global space and put everything 

in it.



Sample Code: 
Defining Namespaces

var myNameSpace = myNameSpace || { };

myNameSpace.foo = function () { alert("bar"); };

myNameSpace.foo();



...Even Your Markup

• In a portal we don’t control the whole page
• Markup can show up in multiple places on the page
• Unique ids are the key to addressing particular 

elements



Sample Markup: Semantic IDs

Example:

tool.context.widget.element

becomes

announcement.list.navToolBar.edit



Sample Code: Finding By ID

// Find an element using an explicit ID
var elm = 
document.getElementById(‘ 

announcement.list.navToolBar.new ‘);



Accessibility



DHTML & Accessibility

• Just when we thought we had Web accessibility in 
hand...
– Not enough information: opaque user interface markup
– Non-mouse usage is often overlooked completely
– Dynamically updated information can be challenging



Assistive Technologies

• Used by people with disabilities to perceive and 
control the user interface.
– Screen reader
– Screen magnifier
– On-screen keyboard

• Most assistive technologies use built-in operating 
system APIs for reflecting the user interface:
– Windows: MSAA/IAccessible2
– Linux: ATK
– Mac: Universal Access for Carbon and Cocoa



Opaque Markup

• HTML has limited semantics:
– Forms, links, buttons, lists, tables

• Dynamic UIs are built from generic HTML tags
– For example, <div> and <span>
– No <slider> or <menu> tags available

• Assistive technologies attempt to read the underlying 
document markup 

• Problem: how do assistive technologies represent 
DHTML interfaces to the user?



Example of Opaque Markup: 

• A DHTML menu bar without semantics:

<ol id=”menubar”>
        <li id="editMenu">Edit
            <ol>
                <li>Cut</li>
                <li>Copy</li>
                <li>Paste</li>
           </ol>
        </li>
   </ol>



Opaque Markup: Solution

• Provide additional semantics or metadata that describe the 
role, function, and states of DHTML user interfaces. How?

• ARIA (Accessible Rich Internet Application)

A

http://www.w3.org/TR/aria-roadmap/
http://www.w3.org/TR/aria-role/
http://www.w3.org/TR/aria-state/

• Working standard from the W3C, led by Fluid partner Rich 
Schwerdtfeger

http://www.w3.org/TR/aria-roadmap/
http://www.w3.org/TR/aria-role/
http://www.w3.org/TR/aria-state/


ARIA

• Attributes added to your HTML markup that describe 
the function and states of your UI components

• These map to all your familiar types of UI widgets:
– Dialog
– Slider
– Progress Bar
– Tab Panel
– Menu bar



Sample Code: ARIA Roles

• A DHTML menu bar with ARIA semantics:
<ol id=”menubar” role=”wairole:menubar”>
        <li id="editMenu" role="wairole:menuitem“
                                    haspopup=“true”>Edit
            <ol>
                <li role="wairole:menuitem">Cut</li>
                <li role="wairole:menuitem">Copy</li>
                <li role="wairole:menuitem">Paste</li>
           </ol>
        </li>
 </ol>



The Value of ARIA

• DHTML accessibility is a short-term problem
• Long-term, it has the potential to make web 

accessibility much better
• Assistive technology developers have had a decade 

to get desktop GUI accessibility right
• By mapping rich-client interfaces with ARIA, web 

interfaces can leverage this support



Non-mouse accessibility

• Most rich Web interactions require the mouse.
• Standard tabbing strategy in browsers is tedious
• Keyboard bindings will enable lots of non-mouse 

control strategies, including:
– On-screen keyboard
– Single switch
– Voice control



Tabbing and tabindex

• Browsers used to only allow you to use tab to focus 
form elements and links

• There is an HTML attribute called “tabindex” that 
allows you to tell the browser how to handle tabbing

• Strategy: 
– allow the user to tab to user interface widgets
– use the arrow keys allow selection within
– Add JavaScript handlers for arrow keys



Sample Markup: Tabindex

<ol id=”menubar” tabindex=”0”>
        <li id="editMenu">Edit
            <ol>
                <li><a href=”/cut” tabindex=”-1”>Cut</a></li>
                <li><a href=”/copy” tabindex=”-1”>Copy</li>
                <li><a href=”/paste” tabindex=”-1”>Paste</li>
           </ol>
        </li>
 </ol>



Sample Code: Keyboard 
Handlers
jQuery(elmRef).keydown( function(event) {

switch(event.keyCode){
case 40: // 40 = Arrow Down

// highlight the next element
jQuery(elmRef).removeClass('highlight');
var nextElm = jQuery(elmRef).next();
jQuery(nextElm).addClass('highlight');

case 38:  // 38 = Arrow Up 
// highlight the prev element

});



DHTML Accessibility Advice

• Out of date accessibility standards and legislation
– Technology-specific standards go out of date easily 
– Current standards impede innovation

• Strategy:
– Embrace JavaScript
– Use emerging standards: ARIA, tabindex, etc.
– Degrade gracefully
– Think about the use case for accessibility
– Start with accessibility, don’t add it at the end



Accessibility Meta Concepts

1. Label everything
• Design for variable font and screen sizes
• It has to work with the keyboard



JavaScript Toolkits



JavaScript is Painful

• Four points of pain:
– Browser bugs and inconsistencies
– DOM traversal and selection
– Event management
– AJAX



Why use a JS Framework?

• Leverage someone else's hell
• Someone else wrote it...
• ...and someone's already tested it
• The framework handles the fundamentals



Summary

• Key techniques:
– Don't poke around with the built in types
– Namespace everything
– Be careful of vacuuming up the DOM
– Make it work with the keyboard
– Add ARIA roles and states

• Toolkits will save you time. We like:
– jQuery for just about everything: “jQuery is the DOM”
– Dojo for black-box, accessible widgets (for now)

D
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Join us for a JavaScript BOF

• JavaScript Birds of a Feather
• 3:40 pm in the Laguna room

• More time to talk about JavaScript
• Bring your ideas and questions!


