
The Fluid Framework

Fluid technology goals

• Build an architecture to support user
interfaces that can be shared and adapted.

• Develop tools that support the inclusive
design process.

• Give users tools to personalize their
environment.

What is a framework?

A software framework, in computer programming, is an abstraction in which common
code providing generic functionality can be selectively overridden or specialized by
user code providing specific functionality.

Frameworks are similar to software libraries in that they are reusable abstractions of
code wrapped in a well-defined API. Unlike libraries, however, the overall program's
flow of control is not dictated by the caller, but by the framework. This inversion of
control is the distinguishing feature of software frameworks.

http://en.wikipedia.org/wiki/Software_framework

http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework

Huh?

Stuff that helps us write great user interfaces faster
by not having to solve the same problem over and
over again.

Imagining the framework

It’s like music...

Configuration IntegrationComponent

Framework

What is our framework?

• Code tools to help us:
• build flexible designs
• avoid errors
• shape our code
• write less code
• build richly accessible code

• Built with open web technologies

• A life cycle for components

• A way to configure & wire up components

• Separation of presentation from logic

• A way to change markup and appearance

The framework gives us...

You can’t bottle design

• Context is everything!

• Each new use case brings new design
considerations

• We can’t get away with shipping one
specific design and assume we’re done

Design for more design

• Our designs should invite new designs

• What are the range of choices and needs
for an interaction?

• How can we support people in making the
right choices for their particular context?

• The technology needs to help us...

Components

Component families

Value of the framework

• Positions us to write components faster

• Allows us to rework our designs for each new
integration

• The framework is a design enabler

• Enables new developers to join our ranks and build
their own solutions

Building the framework

• We didn’t build a framework because
they’re fun to write. They’re not.

• We built a bunch of components, suffered,
and then built a framework that addressed
real challenges.

The wider context

• There are a lot of different JavaScript
programming tools out there.

• Why did we build another one?

Measuring up

Foundational toolkits vs. application frameworks

Foundational toolkits

• Totally presentation focused

• DOM manipulation

• Event binding

• Ajax

• eg. jQuery

Application frameworks

• Model notifications “something changed here”

• Views to help keep your presentational code clean

• Data binding to sync the display with your model

• eg. Sproutcore; Dojo + Dojox

Where does Infusion fit?

• We recognize that we're not the only one in the
browser: we play nice with other toolkits.

• We don’t want to force adopters down a one-way
technology street

Where does Fluid fit?

Infusion is an application framework designed to
provide unprecedented flexibility while preserving
interoperability.

In summary

• Design for more design

• Offer a technology that isn’t all-or-nothing

• Grow it based on real experience

getting geekier

Tasty framework sandwich

What’s the framework?

• jQuery

• keyboard-a11y plugin

• that-ism

• Components & declarative options

• DOM Binder

• Views

• Events

• Subcomponents

Component goals

• Thoroughly accessible

• Easy to share and reuse

• Can be personalized

• Plays nice with other technologies

Addressing real pain

• Behaviour and presentation logic tended to
glob together as a single component

• Too easy to write clever logic that
prevented any changes to the markup

• Handling configuration required lots of
repetitive code

Goals and features
Change markup without breaking code DOM Binder

Customize component Declarative options

Inject custom behaviour into components Events, subcomponents

Decouple presentation from model logic Views

Easily testable Events, views, subcomponents

Make accessibility easier jquery.keyboard-a11y, ui.core

Stable and secure JavaScript objects that-ism

Model View Controller

• Model is the application data and associated
behaviour

• View presents the model and drives the
interaction logic

• Controller is glue

Fluid MVC

• Controllers are the least interesting part of MVC

• Models are transparent

• Views can be easily swapped or altered

jquery.keyboard-a11y

Features

• tabindex normalization across browsers

• arrow key navigation

• activating elements

• migrating to jquery ui-core.js

• makes keyboard accessibility super easy

Keyboard Conventions

• Tab key focuses the control or widget

• Arrow keys select an item

• Enter or Spacebar activate an item

Tab is handled by the browser. For the rest, you
need to write code.

Tabindex examples

<!-- Tab container should be focusable -->
<ul id=”animalTabs” tabindex=”0”>
 <!-- Individual Tabs shouldn’t be focusable -->
 <!-- We’ll focus them with JavaScript instead -->
 <li id=”tab1” tabindex=”-1”>Cats
 <li id=”tab2” tabindex=”-1”>Dogs
 <li id=”tab3” tabindex=”-1”>Alligators

Tabs.html

keyboard-a11y in code

function keyNav(container, tabs, selectHandlers, activationHandlers) {
 // Make the tablist accessible with the Tab key.
 tabContainer.tabbable();

 // Make each tab accessible with the left and right arrow keys.
 tabs.selectable(tabContainer, selectionHandlers, {
 direction: jQuery.a11y.orientation.HORIZONTAL
 });

 // Make each tab activatable with Spacebar and Enter.
 tabs.activatable(activationHandlers);
}

Tabs.js

Further customization

 $.fn.selectable.defaults = {
 direction: $.a11y.orientation.VERTICAL,
 selectablesTabindex: -1,
 autoSelectFirstItem: true,
 rememberSelectionState: true,
 selectableSelector: ".selectable",
 selectableElements: null,
 onSelect: null,
 onUnselect: null,
 onLeaveContainer: null
 };

jquery.keyboard-a11y.js

that-ism

JavaScript pitfalls

• Lack of namespacing and privacy

• Confusing variability of this

• Security and stability issues: prototype

• No ability to link against multiple versions

Namespacing, privacy, and versioning

var fluid_0_6 = fluid_0_6 || {};
var fluid = fluid || fluid_0_6;

(function ($, fluid) {

 // Code goes here.

})(jQuery, fluid_0_6);

Fluid.js

that

• Define objects within a function

• Provides privacy and a bound context

• Types can’t be maliciously altered

• Open for extension, not modification

• Douglas Crockford’s pattern, not ours.

Putting it all together

fluid_0_6 = fluid_0_6 || {};

(function ($, fluid) {

 fluid.uiOptions = function (container, options) {

 var that = fluid.initView("fluid.uiOptions", container, options);

 that.save = function () {

 that.events.onSave.fire(that.model);

 fluid.applySkin(that.model);

 };

 that.refreshView = function () {

 pushModelToView(that);

 };

 setupUIOptions(that);

 return that;

 };

})(jQuery, fluid_0_6);

UIOptions.js

Components

What’s a component?

• Central hub for:

• Events

• Configuration

• Public API

• A composition of Views and model logic

Component contract

 /**
 * Instantiates a new Uploader component.
 *
 * @param {Object} container the DOM element containing the Uploader markup
 * @param {Object} options configuration options for the component.
 */
 fluid.uploader = function (container, options) { ... }

Uploader.js

Declarative Configuration

Tweaking components

• Transparent configuration

• Declarative: ask, don’t instruct

• Mini IoC

What can be configured?

• Modes and optional features

• Selectors

• Styles

• Subcomponents

• Events

• Language bundles

 fluid.defaults("fluid.reorderer", {
 instructionMessageId: "message-bundle:",
 styles: {
 defaultStyle: "orderable-default",
 selected: "orderable-selected",
 dragging: "orderable-dragging",
 mouseDrag: "orderable-dragging",
 hover: "orderable-hover",
 dropMarker: "orderable-drop-marker",
 avatar: "orderable-avatar"
 },
 selectors: {
 dropWarning: ".drop-warning",
 movables: ".movables",
 grabHandle: "",
 stylisticOffset: ""
 },
 avatarCreator: defaultAvatarCreator,
 keysets: fluid.reorderer.defaultKeysets,
 layoutHandler: "fluid.listLayoutHandler",
 events: {
 onShowKeyboardDropWarning: null,
 onSelect: null,
 onBeginMove: "preventable",
 onMove: null,
 afterMove: null,
 onHover: null
 },
 mergePolicy: {
 keysets: "replace",
 "selectors.selectables": "selectors.movables",
 "selectors.dropTargets": "selectors.movables"
 }
 });

reorderer.js

DOM Binder

Decoupling code from markup

• The most common component pitfall is
hard-baking assumptions about markup.

• Use named selectors to separate the
component implementation from the
markup.

• Let users specify alternative selectors.

We’ll take anything

• The DOM Binder supports:

• jQuery selectors

• Elements

• Arrays of elements

• jQuery objects

• Functions

Declaring interesting things

 selectors: {
 fileQueue: ".fluid-uploader-queue",
 browseButton: ".fluid-uploader-browse",
 uploadButton: ".fluid-uploader-upload",
 resumeButton: ".fluid-uploader-resume",
 pauseButton: ".fluid-uploader-pause",
 totalFileProgressBar: ".fluid-scroller-table-foot",
 stateDisplay: "div:first"
 }

Uploader.js

locate()

 that.events.onFileSuccess.addListener(function (file) {
 var row = rowForFile(that, file);
 that.locate("removeButton", row).unbind("click");
 that.locate("removeButton", row).tabindex(-1);
 changeRowState(row, that.options.styles.uploaded);
 });

FileQueueView.js

fastLocate()

 function firstSelectable(that) {
 var selectables = that.dom.fastLocate("selectables");
 if (selectables.length <= 0) {
 return null;
 }
 return selectables[0];
 }

Reorderer.js

refresh()

thatReorderer.refresh = function () {
 thatReorderer.dom.refresh("movables");
 thatReorderer.dom.refresh("selectables");
 thatReorderer.dom.refresh("grabHandle",
 thatReorderer.dom.fastLocate("movables"));
 thatReorderer.dom.refresh("stylisticOffset",
 thatReorderer.dom.fastLocate("movables"));
 thatReorderer.dom.refresh("dropTargets");
 initItems();
 thatReorderer.selectableContext.selectables = thatReorderer.dom.fastLocate("selectables");
 thatReorderer.selectableContext.selectablesUpdated(thatReorderer.activeItem);
};

Reorderer.js

Views

Managing the presentation

• Views are DOM-oriented objects

• They encapsulate the presentational
behaviour of a component

• They show a view on model-sourced data

• They often represent only a portion of the
overall component’s screen real estate

View Contract

• Views:

• Are automatically DOM-bound

• Have a container

• May share with their parent component

• May have options

• May use events

• Should implement refreshView()

Becoming a View

 fluid.fileQueueView = function (container, events, parentContainer,
 uploadManager, options) {
 var that = fluid.initView("fluid.fileQueueView", container, options);

FileQueueView.js

refreshView()

 that.refreshView = function () {
 that.scroller.refreshView();
 that.container.getSelectableContext().refresh();
 };

FileQueueView.js

Events

About the events system

• Pure model-based events

• Designed for sending messages between
JavaScript objects

• Not encumbered by the DOM or
presentational concerns

• Analogous to jQuery events, but
intentionally a bit different

Declaring Events

 events: {
 onShowKeyboardDropWarning: null,
 onSelect: null,
 onBeginMove: "preventable",
 onMove: null,
 afterMove: null,
 onHover: null
 }

Reorderer.js

Types of events

null “hey everyone, something is happening”

preventable “should I do this?”

unicast “our little secret”

Listening for events

listeners: {
 afterFinishEdit: function (newValue, oldValue) {
 // Save the data to the server.
 },
 modelChanged: function (newValue, oldValue, that) {
 // Update state.
 }
}

section-info-inner.html

Using events in code

Firing events:

var finishUploading = function (that) {
 that.events.afterUploadComplete.fire(that.queue.currentBatch.files);
 that.queue.clearCurrentBatch();
};

Listening for events programmatically:

that.events.afterFileQueued.addListener(function (file) {
 that.queue.addFile(file);
});

FileQueueView.js

Subcomponents

• Provides very loose coupling between parts

• Look up dependencies by name, and the
framework will instantiate them for you

• Share portions of overall configuration

• Users can implement their own version or
configure alternatives

Instantiating subcomponents

var setupUploader = function (that) {
 // Instantiate the upload manager and file queue view,
 // passing them smaller chunks of the overall options for the uploader.
 that.uploadManager = fluid.initSubcomponent(that,
 "uploadManager",
 [that.events, fluid.COMPONENT_OPTIONS]);

 that.fileQueueView = fluid.initSubcomponent(that,
 "fileQueueView",
 [that.locate("fileQueue"),
 that.events,
 that.container,
 that.uploadManager,
 fluid.COMPONENT_OPTIONS]);

Uploader.js

Configuring a subcomponent

var myUploader = fluid.uploader(".fluid-uploader", {
 uploadManager: "fluid.demoUploadManager"
});

Uploader2.html

Overriding subcomponent options

var myUploader = fluid.uploader("#simple_uploader", {
 fileQueueView: {
 type: “fluid.fileQueueView”,
 options: {
 selectors: {
 fileRows: ".row",
 fileName: ".fileName",
 fileSize: ".fileSize",
 removeButton: ".removeFile"
 }
 }
 }
});

Where are we going?

UI Options

Skinning system

Renderer

