

Fluid technology goals

® Build an architecture to support user
interfaces that can be shared and adapted.

® Develop tools that support the inclusive
design process.

® Give users tools to personalize their
environment.

What 1s a framework?

A software framework, in computer programming, is an abstraction in which common
code providing generic functionality can be selectively overridden or specialized by
user code providing specific functionality.

Frameworks are similar to software libraries in that they are reusable abstractions of
code wrapped in a well-defined API. Unlike libraries, however, the overall program's
flow of control is not dictated by the caller, but by the framework. This inversion of
control is the distinguishing feature of software frameworks.

http://en.wikipedia.org/wiki/Software_framework

http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Software_framework

Huh?

Stuff that helps us write great user interfaces faster
by not having to solve the same problem over and
over again.

Imagining the tramework

8 € 1995 NAOKO TAXEUGHIKODANSHA, TOEI ANM.
Al rgnts rserved

/UIOT UIUEIIF[010 MMM/ /L1 - 3SISAIU) UOON 10//ES

It’s like music...

Component

DR _LOPIND =™

Configuration

Framework

Integration

What 1s our framework?

® Code tools to help us:
* build flexible designs
* avoid errors
* shape our code
* write less code
* build richly accessible code
® Built with open web technologies

The tramework gives us...

A life cycle for components
A way to configure & wire up components
Separation of presentation from logic

A way to change markup and appearance

You can’t bottle design

® Context is everything!

® Fach new use case brings new design
considerations

® We can’t get away with shipping one
specific design and assume we're done

Design for more design

® Our designs should invite new designs

® What are the range of choices and needs
for an interaction!?

® How can we support people in making the
right choices for their particular context?

® The technology needs to help us...

Components

Configuration

Pattern > Context > Implementation

Component families

Inline Edit

Simple Text Inline Edit Rich Text Inline Edit

Name &

Lecture Sections
Astronmy TAP&MN LEC Melis
— i _{? s [Asson Syoeqts Julie BioE 24 - Aspects of Engineering

Discussion Sections

Actrnnnamu 7A € 10121 AR

Sibley Auditorium, Wednesdays 4 - 5

P

Dropdown Inline Edit

Groups

Value of the framework

Positions us to write components faster

Allows us to rework our designs for each new
Integration

The framework is a design enabler

Enables new developers to join our ranks and build
their own solutions

Building the framework

® VWe didn’t build a framework because
they’re fun to write.They're not.

® We built a bunch of components, suffered,

and then built a framework that addressed
real challenges.

The wider context

® There are a lot of different JavaScript
programming tools out there.

® Why did we build another one!

Measuring up

Foundational toolkits vs. application frameworks

Foundational toolkits

Totally presentation focused
DOM manipulation
Event binding

Ajax

eg. jQuery

Application trameworks

Model notifications “something changed here”
Views to help keep your presentational code clean

Data binding to sync the display with your model

eg. Sproutcore; Dojo + Dojox

Where does Infusion fit?

* We recognize that we're not the only one in the
browser: we play nice with other toolkits.

* We don’t want to force adopters down a one-way
technology street

Where does Fluid fit?

Infusion is an application framework designed to
provide unprecedented flexibility while preserving
interoperability.

In summary

® Design for more design
® Offer a technology that isn’t all-or-nothing

® Grow it based on real experience

oetting geekier

Tasty tramework sandwich

Fluid Components

What’s the framework?

® Query

® keyboard-al ly plugin

® that-ism

® Components & declarative options
e DOM Binder

® Views

® FEvents

® Subcomponents

Component goals

Thoroughly accessible
Easy to share and reuse
Can be personalized

Plays nice with other technologies

Addressing real pain

® Behaviour and presentation logic tended to
glob together as a single component

® Joo easy to write clever logic that
prevented any changes to the markup

® Handling configuration required lots of
repetitive code

(Goals and features

Change markup without breaking code

DOM Binder

Customize component

Declarative options

Inject custom behaviour into components

Events, subcomponents

Decouple presentation from model logic

Views

Easily testable

Events, views, subcomponents

Make accessibility easier

jquery.keyboard-al ly, ui.core

Stable and secure JavaScript objects

that-ism

Model View Controller

® Model is the application data and associated
behaviour

® View presents the model and drives the
interaction logic

® Controller is glue

Fluid MVC

® Controllers are the least interesting part of MVC
® Models are transparent

® Views can be easily swapped or altered

Features

tabindex normalization across browsers
arrow key navigation

activating elements

migrating to jquery ui-core.|s

makes keyboard accessibility super easy

Keyboard Conventions

® [ab key focuses the control or widget
® Arrow keys select an item

® Enter or Spacebar activate an item

Tab is handled by the browser. For the rest, you
need to write code.

Tabindex examples

Tabs.him/

<!-- Tab container should be focusable -->

<ul i1d="animalTabs” tabindex="0">
<!-- Individual Tabs shouldn’t be focusable -->
<!-- We'll focus them with JavaScript instead -->
<li id="tab1"” tabindex="-1">Cats</1li>
<li 1d="tab2” tabindex="-1">Dogs</1l1>
<li 1d="tab3"” tabindex="-1">Alligators

keyboard-ally in code

Tabs.js

function keyNav(container, tabs, selectHandlers, activationHandlers) {
// Make the tablist accessible with the Tab key.
tabContainer.tabbable();

// Make each tab accessible with the left and right arrow keys.
tabs.selectable(tabContainer, selectionHandlers, {

direction: jQuery.ally.orientation.HORIZONTAL
}).

// Make each tab activatable with Spacebar and Enter.
tabs.activatable(activationHandlers);

Further customization

Jquery.keyboard-al 1y.7s

$.fn.selectable.defaults = {
direction: $.ally.orientation.VERTICAL,
selectablesTabindex: -1,
autoSelectFirstItem: true,
rememberSelectionState: true,
selectableSelector: ".selectable",
selectableElements: null,
onSelect: null,
onUnselect: null,
onLeaveContainer: null

JavaScript pittalls

Lack of namespacing and privacy
Confusing variability of this
Security and stability issues: prototype

No ability to link against multiple versions

Namespacing, privacy, and versioning

Fluidjs

var fluid_0_6 = fluid_0_6 || {};
var fluid = fluid || fluid_0_6;

(function (%, fluid) {
// Code goes here.

})(jQuery, fluid_0_6);

that

Define objects within a function
Provides privacy and a bound context
Types can’t be maliciously altered
Open for extension, not modification

Douglas Crockford’s pattern, not ours.

Putting 1t all together

UlOptions.js

fluid_0_6 = fluid_0_6 || {};
(function ($, fluid) {
fluid.uiOptions = function (container, options) {

var that = fluid.initView("fluid.uiOptions", container, options);

that.save = function () {
that.events.onSave.fire(that.model);
fluid.applySkin(that.model);

},

that.refreshView = function () {
pushModelToView(that);
i

setupUIOptions(that);
return that;

},
})(jQuery, fluid_0_6);

What’s a component?

® Central hub for:
® Events
® Configuration

® Public API

® A composition of Views and model logic

Component contract

Uploader.js

/**

* Instantiates a new Uploader component.

* @param {Object} container the DOM element containing the Uploader markup
* @param {Object} options configuration options for the component.

*/

fluid.uploader = function (container, options) { ... }

WARMER OFF

COOLER

Tweaking components

® Transparent configuration

® Declarative:; ask, don’t instruct

® Mini loC

What can be contigured?

® Modes and optional features
® Selectors

® Styles

® Subcomponents

® Events

® | anguage bundles

reorderer./s

fluid.defaults("fluid.reorderer", {

instructionMessageld: "message-bundle:",

styles: {
defaultStyle: "orderable-default",
selected: "orderable-selected",
dragging: "orderable-dragging",
mouseDrag: "orderable-dragging",
hover: "orderable-hover",
dropMarker: "orderable-drop-marker",
avatar: "orderable-avatar"

}

selectors: {
dropWarning: ".drop-warning",
movables: ".movables",
grabHandle: "",
stylisticOffset: ""

}

avatarCreator: defaultAvatarCreator,
keysets: fluid.reorderer.defaultKeysets,
layoutHandler: "fluid.listlLayoutHandler",
events: {
onShowKeyboardDropWarning: null,
onSelect: null,
onBeginMove: "preventable",
onMove: null,
afterMove: null,
onHover: null
b
mergePolicy: {
keysets: "replace",
"selectors.selectables": "selectors.movables",
"selectors.dropTargets": "selectors.movables"

P,

m fol atd
11 arfr;ﬁrn)«une
gt caaf » commpar
nQCy reroar
S‘(..xmlb ufd-f’df falunf’

i t’xkbl [’.lﬂgu‘i INccC

cxp('.rmf. Jcofmeam
e Laadeprmam -

3"1(" {t‘ L 71!5: 1 02:7) &’(‘ﬂlr

0(O L‘tlllfl'lf ﬂondclrc*ulu 711 -
¥

fpf COneri bul‘\tuf Coy d.'
ami liaran dmom!: fn cictf -
!frkmu‘.unluﬂ [ATCTOA
cwy 1INl incrufdlmr) Cs
o facnficium iaf A -
tholocaafca 77 Qi

B 17)¢ '
[4

'T'?i YA 11 PAY -
] ' e
| gymmmpf drerio propolt

"!‘

[z\?lz AUyemmm

() U{"um(l)o nl(li : A 1291}

N
» ~ '-_‘3'.(;111)(“1 LT L iz,!; mmc

- gy *tﬁ 3 - + :

Q(Ek.)nﬁd:’ AT ANGi R ofad s CryrMmulld
g L S) g
s e dl:zu'.’.»‘- SEIRRIEES £z Pl QR YIATT. (17
F e nenyeatmn Lt eThHomo

1p'4

i A!H’I - l.?.;'((lllt")Y)r’ AP 2 o I

nder ...

S
‘\.l)‘)’cll‘,i:)’?4’2 ':!7!“77) !]_1'\"1(r

\ f.’r.ﬁ’.!,”_ll"'. ”"?.",".'fﬁ'
(lld(‘[ﬂ! 1r v T Bty ;_«[1)151‘;’
féx}nz'nn'; IOy ey

IS'?_’;';‘;N(‘JS‘," { ?‘}”.adlnf per

) !H'f) :
k"‘l[‘ J(l‘)f. « ™

?,.“ : " ‘. Y I lh L

Decoupling code from markup

® The most common component pitfall is
hard-baking assumptions about markup.

® Use named selectors to separate the

component implementation from the
markup.

® | et users specify alternative selectors.

We’ll take anything

® The DOM Binder supports:

* jQuery selectors
* Elements

* Arrays of elements
* jQuery objects

* Functions

Declaring interesting things

Uploader.js

selectors: {
fileQueue: ".fluid-uploader-queue",
browseButton: ".fluid-uploader-browse",
uploadButton: ".fluid-uploader-upload",
resumeButton: ".fluid-uploader-resume",
pauseButton: ".fluid-uploader-pause",

totalFileProgressBar: ".fluid-scroller-table-foot",
stateDisplay: "div:first"

locate()

FileQuenel rew./s

that.events.onFileSuccess.addListener(function (file) {
var row = rowForFile(that, file);
that.locate("removeButton", row).unbind("click");
that.locate("removeButton", row).tabindex(-1);
changeRowState(row, that.options.styles.uploaded);

});

tastl.ocate()

Reorderer.js

function firstSelectable(that) {
var selectables = that.dom.fastlLocate("selectables");
if (selectables.length <= 0) {
return null;

}

return selectables[0];

refresh()

Reorderer./s

thatReorderer.refresh = function () {

thatReorderer.dom.refresh("movables");

thatReorderer.dom.refresh("selectables");

thatReorderer.dom.refresh("grabHandle",
thatReorderer.dom.fastLocate("movables"));

thatReorderer.dom.refresh("stylisticOffset",
thatReorderer.dom.fastLocate("movables"));

thatReorderer.dom.refresh("dropTargets");

initItems();

thatReorderer.selectableContext.selectables = thatReorderer.dom.fastLocate("selectables");

thatReorderer.selectableContext.selectablesUpdated(thatReorderer.activeltem);

Managing the presentation

® Views are DOM-oriented objects

® They encapsulate the presentational
behaviour of a component

® [hey show a view on model-sourced data

® They often represent only a portion of the
overall component’s screen real estate

View Contract

® Views:
* Are automatically DOM-bound
* Have a container
* May share with their parent component
* May have options
* May use events

* Should implement refreshview()

Becoming a View

FileQuenel iew.js

fluid.fileQueueView = function (container, events, parentContainer,
uploadManager, options) {
var that = fluid.initView("fluid.fileQueueView", container, options);

retreshView ()

FileQuenel ien.js

that.refreshView = function () {
that.scroller.refreshView();
that.container.getSelectableContext().refresh();

|

About the events system

® Pure model-based events

® Designed for sending messages between
JavaScript objects

® Not encumbered by the DOM or
presentational concerns

® Analogous to jQuery events, but
intentionally a bit different

Declaring Events

Reorderer.js

events: {
onShowKeyboardDropWarning: null,
onSelect: null,
onBeginMove: "preventable",
onMove: null,
afterMove: null,
onHover: null

Types ot events

il “hey everyone, something is happening”
oreventable should | do this?”

unicast our little secret”

Listening tfor events

section-info-inner.hinmil

listeners: {
afterFinishEdit: function (newValue, oldValue) {
// Save the data to the server.
3
modelChanged: function (newValue, oldValue, that) {
// Update state.

}

Using events in code

FileQuenel e1.js

Firing events:

var finishUploading = function (that) {
that.events.afterUploadComplete.fire(that.queue.currentBatch.files);
that.queue.clearCurrentBatch();

Listening for events programmatically:

that.events.afterFileQueued.addListener (function (file) {
that.queue.addFile(file);

}),

Subcomponents

Provides very loose coupling between parts

Look up dependencies by nhame, and the
framework will instantiate them for you

Share portions of overall configuration

Users can implement their own version or
configure alternatives

Instantiating subcomponents

Uploader.js

var setupUploader = function (that) {
// Instantiate the upload manager and file queue view,
// passing them smaller chunks of the overall options for the uploader.
that.uploadManager = fluid.initSubcomponent(that,
"uploadManager",
[that.events, fluid.COMPONENT_OPTIONS]);

that.fileQueueView = fluid.initSubcomponent(that,
"fileQueueView",

[that.locate("fileQueue"),
that.events,
that.container,
that.uploadManager,
fluid.COMPONENT_OPTIONS]);

Configuring a subcomponent

Uploader2. himl

var myUploader = fluid.uploader(".fluid-uploader™, {
uploadManager: "fluid.demoUploadManager"

});

Overriding subcomponent options

var myUploader = fluid.uploader("#simple_uploader", {
fileQueueView: {
type: “fluid.fileQueueView”,
options: {
selectors: {

fileRows: ".row",

fileName: ".fileName",
fileSize: ".f1ileSize",
removeButton: ".removeFile"

});

Where are we going?

Ul Options

User Interfa

B set Preferences
Customize the template by setting preferences to suit your ne Cl ted in the Pre

Preview Window
Color

- p 1 - link color Standard

Color Palette 2 - link color

or Palet nk color

Color Palette 4 - link color

Layout

Layout Graphics Table of
Contents
Default

Simple

Text

Font Spacing

Links
Highlight links {on ho

lect a different template Keep these preferences and continue

Skinning system

v Sites

Home » Uncategorized

Profile « My Workspace

+ Famous Monuments
» 01d legacy site
« Painters and Paintings

v My Profile
Memebership

Schedule
Resources
Worksite Setup

Preferences

X
X
X
X
X
X
X
X

Account

hemes:| Mist | High Contrast | Large Print

Renderer

