
Boxer and the Tradition of
Materialised Programming

Antranig Basman

A paradoxical tradition

Whilst Boxer spearheaded the tradition, most members joined it
unknowingly of their predecessors

What characterises the tradition?

We’ll use as a working definition the one from our paper Software and How it Lives
On (Basman, Church, Klokmose & Clark, 2016) and say that a programming
environment is materialised to the extent that it is free of divergence

divergence - a discrepancy between its bookkeeping, runtime state and the
state with respect to which it can be externally authored

In practice, this definition is insufficient, but good enough to draw a boundary
around the systems of interest. Has easily checkable consequences for the
system’s memory model in that it’s free of usually ubiquitous constructs such as
the stack and the heap (see Sitaker, 2016)

https://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
https://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
http://canonical.org/~kragen/memory-models/

Boxer itself

Was designed explicitly with this ergonomic and engineering aim - A Principled
Design for an Integrated Computational Environment - ACM HCI (diSessa, 1985)
explains that the purpose of its naive realism was explicitly to enable a simple
surrogate model whereby users could step through the trajectory of an execution
by visualising successive configurations of the system itself.

Even those designers who are willing to divert resources like the display
screen from highly tuned functionality to understandability have almost
universally opted for user interfaces which act as buffers or facades to hide
system complexities from the user rather than to search for a simplicity which
could be shown

https://boxer-project.github.io/boxer-literature/papers/A%20Principled%20Design%20for%20an%20Integrated%20Computational%20Environment%20-%20ACM%20HCI%20(diSessa,%201985).pdf
https://boxer-project.github.io/boxer-literature/papers/A%20Principled%20Design%20for%20an%20Integrated%20Computational%20Environment%20-%20ACM%20HCI%20(diSessa,%201985).pdf

Chris Hancock’s Flogo II

Described in 2003 PhD Thesis Real-Time Programming and the Big Ideas of
Computational Literacy

The only member of the tradition created with knowledge of its predecessor

Inspired by Boxer’s design but addressing criticisms (p.29-30) of its failure to
support real-time applications and asynchrony

https://boxer-project.github.io/boxer-literature/theses/Real-Time%20Programming%20and%20the%20Big%20Ideas%20of%20Computational%20Literacy%20(Hancock,%20MIT%20PhD,%202003).pdf
https://boxer-project.github.io/boxer-literature/theses/Real-Time%20Programming%20and%20the%20Big%20Ideas%20of%20Computational%20Literacy%20(Hancock,%20MIT%20PhD,%202003).pdf

Materialised
Recursion in
Flogo II -
Boxtower

Flogo II’s motivation for materialisation

This creates a steady frame for program execution, and,
consequently, a meaningful dynamic display.

And yet, procedural code remains less live than declarative code.
Much procedural code spends most of its time in an inert state,
waiting to be executed. When it does run, its execution flashes by
as part of a thread of execution that may jump around in the
program. Flogo II’s steady trace of procedural code is helpful for
sorting out what the procedural code is doing or has done.

Subtext

A family of systems designed by Jonathan Edwards (2005-present), without
knowing reference to Boxer’s tradition

Most condensed motivation in Subtext: Uncovering the Simplicity of Programming
appealing to Don Norman’s “Gulfs of Execution and Evaluation.”

Parallels Boxer’s “Copy and Execute” with a “Theory of Copying” as its
mechanism for elaboration/execution.

“Copying is isormophic” notion mirror’s Boxer’s semantic for copying/executing
material containing internal/external links.

https://www.subtext-lang.org/OOPSLA05.pdf

Subtext (2005 treatment)

Calling, referring, instantiating, sharing, refining, modularizing, and
versioning all become forms of copying. The ultimate usability feature
is coherence.

Echoes Boxer’s notion of detuned primitives and diffused functionality

Subtext could be described as functional prototypes.

A distant echo of “copy and execute” but actually a rather different model.
Subtext works to preserve provenance of raw materials for execution, and
features much milder polymorphism at the executing site

Fluid’s Infusion Framework

Our own framework/language (2009-present) originally motivated to create highly
accessible, deeply adaptable web content.

Led to retrospective discovery of Open Authorial Principle (Basman, Lewis, Clark,
2018)

The design should allow the effect of any expression by one author to be
replaced by an additional expression by a further author

A model of additive authorship in networks of authors, echoing Boxer’s LaDDER
model (Layered Distributed Development of Educational Resources) (Boxer
Profile: Component Computing, diSessa, 2001)

https://github.com/amb26/papers/raw/master/onward-2016/onward-2016.pdf
https://boxer-project.github.io/boxer-literature/papers/Boxer%20Profile%20-%20Component%20Computing%20within%20a%20Computational%20Medium%20(diSessa,%202001).pdf
https://boxer-project.github.io/boxer-literature/papers/Boxer%20Profile%20-%20Component%20Computing%20within%20a%20Computational%20Medium%20(diSessa,%202001).pdf

Inspiration from the Web

The materialised structures of the web following from principles such as REST,
and the DOM’s addressible structure exposed as CSS selectors, eventually
motivated a fully materialised design, free of divergence (2018 paper)

 - The expressions of multiple collaborating authors cannot be adequately
negotiated without a stable coordinate system addressing the entire design,
including those parts currently in execution

 - The experience of negotiating over styling decisions via a browser’s CSS
inspector with a network of authors is a great model for negotiating application
structure in a LaDDER-like network

Integration

Not in the sense of Boxer’s “integrated” (self-contained) functionality - instead
refers to integration with facilities outside the system

The Mythical Matched Modules (Kell, 2009) introduces the notion of an Integration
Domain - expresses how values appearing at different coordinates are correlated,
and how the contents of memory can be explained - rather than necessarily
designating execution

 - Complementary both to Boxer’s strategy for eliminating divergence as well as
Subtext’s

A “Boxer in a Box” limits its utility

Chris Hancock’s 4th criticism (2003 thesis) - that Boxer represents a parallel world
- a hermetic application

A “Boxer on the web” (as with Bruce Sherin’s implementation) would remedy this
to a good extent, but not completely

Henri’s desire for Boxer is that it could be used to orchestrate other applications

 - This is an aspiration but ultimately would require these applications to be
re-expressed or wrapped

 - Since there is currently no medium for this integration, these capabilities tend
not to be exposed, but if there were, they might be

 - Jeremy notes that all of the integration facilities on his computer are
incommensurable and unusable

Externalisation

Crude, experimental system, the GPII Nexus (2018) exposed a coordinatised
executing design over web protocols. Only weakly divergence-free.

Underlying theory developed in Tracing a Paradigm for Externalization: Avatars
and the GPII Nexus (Clark, Basman, 2017)

Could we make Boxer’s boxes entirely transparent - to view from outside the
system?

 - possibly not at the same time as preserving its execution semantics as a core
facility, because of their exceptional demands on polymorphism

 - if we didn’t, could execution semantics be represented at some other level of
the system design?

https://wiki.fluidproject.org/display/fluid/Nexus+API
https://refuses.github.io/preprints/avatars.pdf
https://refuses.github.io/preprints/avatars.pdf

Boxer Futures

 - Boxer on the web (as with Bruce Sherin’s BoxerJS)

 - Asynchronous Boxer (as with Chris Hancock’s Flogo II)

 - Externalised Boxer (with a transparent, malleable file format)

 - Collaborative Boxer (with the file format synchronised to a distributed group, as
with Webstrates)

And then - can we extract some kind of common substrate from “Boxer variants”
that can support Mark Guzdial’s ecology of languages, where “Classic Boxer”
appears as just one personality of the language?

Sustaining extremely long-term, sporadically funded,
highly distributed and ambitious research
programmes?

 - Over to Luke

