# Designing and Programming with Multiplicity

Philip Tchernavskij March 2020

#### Overview

The tools I have used to develop design problems and propose interventions in the context of multiple computing

- I'm still developing and making sense of some
- Maybe some are useful to IDRC/the Fluid community
- I would love to hear about your theories and methods as well
- Please ask questions!

# From human factors to human actors

Early Human-Computer Interaction (HCI) models described humans as components of computer systems, leading to

- Lab studies defining parameters of "human factors"
- Concept of users without history, context, or expertise

# From human factors to human actors



# From human factors to human actors

Second-wave HCI drew from methods and theories that aimed to describe practices and context more holistically, e.g. ethnography

Tool for analysis and design developed by Bødker & Klokmose

- Based on cultural-historical activity theory
- Describes human-artifact (mis-)match
- Views interaction as dialectical and developing, not causal and static
- Combines expertise, ability, and situational context

Artifact Human Mediating aspects Orienting basis

Artifact Human Instrumental aspects Goal-orientation

What?

Artifact Human What? Instrumental aspects Goal-orientation Hows Operational aspects Operational orientation Handling aspects Learned handling - Adaptive aspects Adaptation

Artifact

Human

**Mhh**s Motivational aspects Motivational orientation What? Instrumental aspects

Goal-orientation

Hows

Operational aspects

Handling aspects

Learned handling

Operational orientation

Adaptive aspects

Adaptation

#### HAM and Accessible Interfaces

Accessibility adaptation often focuses on the operational level of artifacts

- How does accessibility and inclusiveness address instrumental and motivational aspects?
- How do accessible interfaces support routinizing and abbreviating common interactions?

### Analyzing Development



### Analyzing Multistability



### Artifact Ecologies

VSCode, Wikipedia, etc. are not used alone, but alongside other tools, digital and not

- An artifact ecology consists of the artifacts that an individual (or community) owns, uses, and has access to
- Overlapping, historical, current, and potential ecologies
  - e.g. the mass of collaboration tools we enumerated last week

### How Ecologies Develop

- Happenstance: unpredictable resources, changes, and breakdowns
- Strategies: possibly formalized activities to develop and maintain support for individual or group practice
- Tactics: situated reactions to replace, hack, or reconfigure artifacts in response to happenstance

### Appropriation and Design

Happenstance, strategies, and tactics are examples of intrinsic design, as opposed to extrinsic design

#### Appropriation and Design

Intrinsic and extrinsic design are entangled

- Adopting commercial and public tools and resources is socially and economically necessary
- Tools "from outside" only become artifacts through articulation work that weaves them into a concrete practice

#### The Limits of Appropriation

- We have theories that describe how people deal with the mess of variously compatible technologies
- But we're missing theories that describe why certain kinds of appropriation happen and others don't
- The tendency towards centralization and enclosure

#### Qualitative Methods

These theoretical models motivate multiple data gathering methods

- What: critical incident interviews, contextual inquiry
- How: in-situ observations, video analysis
- Why: in-depth interviews, diary studies
- Dynamics and ecologies: artifact maps and histories

### Artifact Ecology Mapping

Bødker et al. create maps of artifact ecologies to focus on different ecology-level patterns

### Artifact Ecology Mapping





Drawing with participants, using prepared stickers

#### Artifact Ecology Mapping





Remapping with co-investigators and annotating

# From systems to ecosystems

Our models for the architecture and interfaces of interactive software were also developed in an era of relatively few, relatively stable devices and applications.

# From systems to ecosystems



# From systems to ecosystems

In the last three decades, the use and production of software has changed substantially

- From the workplace to work and leisure intermixed
- From a single, static system to many heterogeneous devices, apps, and documents

Production tools have been transformed in response, but the user-facing model of applications lags behind

# Programming for multiplicity

Tools for customizing and integrating interfaces help people manage a changing and distributed computing environment

- Appropriation work + computation = abbreviation
- Customization supports both diversification and standardization

#### A customization network



Figure 1: Exchange of Customization Files at Project Athena

(Mackay, 1990)

#### The Tailorability Mountain and its Inhabitants



(MacLean et al., 1990)

#### Buttons - The Gentle Slope to Tailorability and the Folk Who Live on the Hill





#### Malleable Software

Tools such as If This Then That enable some ability to integrate applications, but they can't email a button

To enable inclusive networks of customization today, we have to erase the boundaries of applications

#### Malleable Software



#### Malleable Software

Malleability could support inclusive design

- Interoperability and customizability support maintenance
- Assembling systems piecemeal means more people can have a say

#### Conclusion

How do we improve interfaces when problems can't be localized to a single user in front a of a single system at a single point in time?

We need to be able to describe and design for technological practices that are distributed, multi-stable, and developing

