Pattern Languages

IDRC
February 7, 2018

Overview

* Pattern Languages
» Applications to computer software

A Pattern Language for Infusion

Christopher Alexander book series

* Volume 1, The Timeless Way of Building (1979)
 Volume 2, A Pattern Language (1977)

* Volume 3, The Oregon Experiment (1975)

Patterns

“...we must begin by understanding that every place is
given its character by certain patterns of events that keep on
happening there.”

“These patterns of events are always interlocked with
certain geometric patterns in the space. Indeed, as we shall
see, each building and each town is ultimately made out of
patterns in the space, and out of nothing else: they are the
atoms and the molecules from which a building or town is
made.”

Christopher Alexander, The Timeless Way of Building

Watching the World Go By

“Consider, for example, the pattern of events which we
might call ‘watching the world go by.’

“We sit, perhaps slightly raised, on the front porch, or on
some steps in a park, or on a café terrace, with a more or less
protected, sheltered, partly private place behind us, looking
out into a more public place, slightly raised above it,
watching the world go by.

| cannot separate it from the porch where it occurs.”

Christopher Alexander, The Timeless Way of Building

Writing Generative Patterns

“Each pattern is a rule which describes what you have to do
to generate the entity which it defines.”

“Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.”

Christopher Alexander, The Timeless Way of Building and A
Pattern Language

The Quality Without a Name

» Patterns that generate places with the quality without a name
 Alive

* Whole

* Comfortable

* Free

* Exact

e Egoless

e Eternal

The Quality in Software (excerpts)

“l can’t tell you what the quality is, but | can tell you some
things about software that possesses it:

* [ts modules and abstractions are not too big
* If | look at any small part of it, | can see what is going on

* [f | look at any large part in overview, | can see what is
going on

* | can imagine changing it, adding more functionality
* | am not afraid of it”
Richard Gabriel, Patterns of Software

A Pattern Language

* Network of 253 patterns, structured in 3 sections:

* Towns: town and country, roads and paths, work and
family, public institutions for a neighbourhood (1-94)

* Buildings: “we are dealing for the first time with patterns
that are under the control of individuals or small groups of

individuals, who are able to build the patterns all at once.”
(95-204)

 Construction: concrete patterns for building (205-253)

Alexander Pattern Form

N

Picture

ntroductory paragraph setting context and explaining
now it helps to complete larger patterns

Headline (bold)
Body of the problem; Therefore:
Solution (bold)

Diagram

No 0k w

Final paragraph tying the pattern to smaller patterns
needed to complete the pattern

2851 DIFFERENT CHAIRS

"

. . . when you are ready to furnish rooms, choose the variety of
furniture as carefully as you have made the building, so that each
piece of furniture, loose or built in, has the same unique and
organic individuality as the rooms and alcoves have—each
different, according to the place it occupies—SEQUENCE OF
SITTING SPACES (142), SITTING CIRCLE (185), BUILT-IN SEATS
(202).

oo ofe ol

People are different sizes; they sit in different ways.
And yet there is a tendency in modern times to make all
chairs alike.

Of course, this tendency to make all chairs alike is fueled by
the demands of prefabrication and the supposed economies of
scale. Designers have for years been creating “perfect chairs”—
chairs that can be manufactured cheaply in mass. These chairs are
made to be comfortable for the average person. And the institu-
tions that buy chairs have been persuaded that buying these
chairs in bulk meets all their needs.

But what it means is that some people are chronically uncom-
fortable; and the variety of moods among people sitting gets en-
tirely stifled.

Obviously, the “average chair” is good for some, but not for
everyone. Short and tall people are likely to be uncomfortable.
And although situations are roughly uniform—in a restaurant
everyone is eating, in an office everyone is working at a table—
even so, there are important distinctions: people sitting for dif-
ferent lengths of time; people sitting back and musing; people
sitting aggressively forward in a hot discussion; people sitting
formally, waiting for a few minutes. If the chairs are all the same,
these differences are repressed, and some people are uncomfort-
able.

What is less obvious, and yet perhaps most important of all,
is this: we project our moods and personalities into the chairs
we sit in. In one mood a big fat chair is just right; in another

1158

251 DIFFERENT CHAIRS

mood, a rocking chair; for another, a stiff upright; and yet again,
a stool or sofa. And, of course, it isn’t only that we like to switch
according to our mood; one of them is our favorite chair, the one
that makes us most secure and comfortable; and that again is dif-
ferent for each person. A setting that is full of chairs, all slightly
different, immediately creates an amosphere which supports rich
experience; a setting which contains chairs that are all alike puts
a subtle straight jacket on experience.

Therefore:

Never furnish any place with chairs that are identically
the same. Choose a variety of different chairs, some big,
some small, some softer than others, some rockers, some
very old, some new, with arms, without arms, some wicker,
some wood, some cloth.

g
Q?Q{i different chairs

AR RN

P P

Where chairs are placed alone and where chairs are gathered,
reinforce the character of the places which the chairs create with
POOLs OF LIGHT (252), each local to the group of chairs it
MAarks, s .

1159

251 Different Chairs

People are different sizes; they sit in different ways. And
yet there is a tendency in modern times to make all
chairs alike.

Therefore:

Never furnish any place with chairs that are identically
the same. Choose a variety of different chairs, some big,
some small, some softer than others, some rockers,
some very old, some new, with arms, without arms,
some wicker, some wood, some cloth.

Language for a Porch (page xxxv)

* Private Terrace on the Street (140) -+ Raised Flowers (245)
 Sunny Place (161) e Different Chairs (251)
e Qutdoor Room (163)

« Six-foot Balcony (167)

* Paths and Goals (120)

* Ceiling Height Variety (190)

e Columns at the Corners (212)

* Front Door Bench (242)

Pattern Relationships

Common Areas at the Heart (129): Create a single
common area for every social group. Locate it at the
center of gravity of all the spaces the group occupies,
and in such a way that the paths which go in and out of

the building lie tangent to it.

A Room of One’s Own (141): Give each member of the
family a room of his own, especially adults.

Use this pattern as an antidote to the extremes of
‘togetherness’ created by Common Areas at the Heart.

Application of Patterns to Software

* 1987: Kent Beck and Ward Cunningham, Using Pattern
Languages for Object-Oriented Programs

e 1992: Peter Coad, Object-oriented Patterns
« 1994: First Pattern Languages of Programs (PLoP) conference

e 1995: |Jim Coplien and Doug Schmidt, Pattern Languages of
Program Design

* 1995: Erich Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software

* 1996: Richard Gabiriel, Patterns of Software: Tales from the
Software Community

Composed Method (Kent Beck SBPP)

* How do you divide a program into methods?

 Divide your program into methods that perform one
identifiable task. Keep all of the operations in a method at
the same level of abstraction. This will naturally result in
programs with many small methods, each a few lines long.

Controller>>controlActivity

se
se
se

f contro
f contro
f contro

Initialize.
Loop.
Terminate

Intention Revealing Selector (SBPP)

* What do you name a method?

* Name methods after what they accomplish
Collection>>includes:

(rather than linearSearchFor:, hashedSearchFor:, or
searchFor:)

Data Transfer Object (Fowler PEAA)

AlbumDTO

title: String
artist: String

toXmlElement
readXml

Album Assembler

Album

title: String

K

1

Artist

name: String

Patterns for End-user-programmers

“Alexander proposes homes and offices be designed and
built by their eventual occupants. These people, he reasons,
know best their requirements for a particular structure. We
agree, and make the same argument for computer
programs. Computer users should write their own
programs.”

Kent Beck and Ward Cunningham (1987) Using Pattern
Languages for Object-Oriented Programs

Patterns for Programmers

“At least one computer scientist identified the ‘user’ of a
piece of software as the end user. This appears to make
sense at first, but when you read Alexander, it is clear that a
‘user’ is an inhabitant - someone who lives in the thing
constructed. The thing constructed is under constant repair
by its inhabitants, and end users of software do not
constantly repair the software, though some might want to.’

Richard Gabriel (1996) The Quality Without a Name in Patterns
of Software

I

Patterns of User Experience

“As a rule of thumb, anyone who regularly refers to pattern
languages of programming is not likely to be the intended
audience for patterns of user experience. Patterns of user
experience are, however, more closely related to the
architectural interpretation of Alexander’s work. The ‘internal’
design patterns so popular in the software patterns community
might be compared to a particular pattern of screws and brackets
with which two beams can be securely connected...”

Alan Blackwell and Sally Fincher (2010) PUX: Patterns of User
Experience

A Pattern Language for Infusion

* For Infusion, can we make a network of patterns at
different ‘scales’?

» User experience
e System integration
* Software design/architecture

e Construction

Creative User Rights

 Take a software application apart and use only one piece of it
* Combine two software applications together into one

e See the state of a software application, and present it
differently inside another software application

e Customize the user interface so that the material presented
inside it is easier for me to read

 Break a software application down into smaller (independently
functioning) parts to understand how each part works

Resources

 Hillside Group Patterns pages

* Portland Pattern Repository

e Kent Beck and Ward Cunningham: Using Pattern
Languages for Object-Oriented Programs

* Richard Gabriel: Patterns of Software [PDF]

* Blackwell and Fincher: Patterns of User Experience [PDF]

* Martin Fowler: Writing Software Patterns

http://hillside.net/patterns/
http://c2.com/ppr/
http://c2.com/doc/oopsla87.html
https://www.dreamsongs.com/Files/PatternsOfSoftware.pdf
https://www.cl.cam.ac.uk/~afb21/publications/BlackwellFincher-PUX.pdf
https://www.martinfowler.com/articles/writingPatterns.html

Resources

* Erin Malone: A History of Patterns in User Experience
Design

* Creative User Rights (Fluid wiki)

* An Infusion Pattern Language (Fluid wiki)

https://medium.com/tangible-ux/a-history-of-patterns-in-user-experience-design-f21f7eaabb83
https://wiki.fluidproject.org/display/fluid/Creative+User+Rights
https://wiki.fluidproject.org/display/fluid/An+Infusion+Pattern+Language

Acronyms

* SBPP: Smalltalk Best Practice Patterns by Kent Beck

 PEAA: Patterns of Enterprise Application Architecture by
Martin Fowler

