

Shahab Pourtalebi

Experience		Education	
INSTRUCTOR	2018 - Present	PhD	2012 – 2017
Sheridan College		Design Engineering department, IDE, TU Delft	
RESEARCHER / INSTRUCTOR Delft University of Technology	2012 - 2017	 Topic: System-level feature-based modeling of Cyber-Physical Systems 	
FACULTY MEMBER	2006 – 2012	MASTER's DEGREE	2003 - 2006
Tabriz IA University		Art University of Tehran	
HEAD OF DEPARTMENT	2008 – 2011	· Major: Industrial design engineering	
Tabriz IA University		· Summa cum laude	
DESIGNER / PROJECT MANAGER <i>NAK design studio</i>	2004 – 2006	BACHELOR's DEGREE	1999 - 2003
		Sahand University of Technology	
DESIGNER / USER RESEARCHER	2000 – 2004	Major: Industrial design engir	neering
PARS ZARASA household design and industrial company		· Summa cum laude	

Cyber-Physical System (CPS)

Characteristics of CPSs

Distributed integrity: distributed cooperative problem solving, in harmony with the techno-socio-economic environment

Openness: functional and structural openness (with blurred overall system boundaries)

Dynamicity: capability to dynamically change behaviors, and reconfigure internal structure

Source multiplicity: knowledge-intensive components are able to handle different information sources

Goal-oriented cooperation: components may operate according to different problem solving strategies while achieving the overall objective of the system

Autonomy: memorizing and learning from history in an unsupervised manner by smart agents

Proactivity: non-planned functional interactions, and acting proactively in emergent internal and external situations

Strategy variability, Integrity, Heterogeneity,

Real-time processing, Situated reasoning, Reproductive intelligence

Paradigmatic features	Ordinary systems	Low-end CPSs	High-end CPSs
System complexity	Ordinarily compound	Linearly complex	Non-linearly complex
Functional objectives	Providing means	Providing utilities	Providing services
Overall architecture	Closed system boundary	Extendable system boundary	Open system boundary
Construction topology	Predefined fix architecture	Predefined modifiable architecture	Runtime dynamically architected
Functional organization	Integrated structure	Distributed structure	Decentralized structure
Functional connectivity	Stand alone	Static networked	Dynamically networked
Operating principles	Execution and control	Sensing, computing and activating	Observing, reasoning, activating and motivating
Functional intelligence	Functionally determined	Functionally smart with limited awareness	Functionally autonomous and conscious
Readiness for operation	Condition activated	Alert in operation	Proactive in operation
Intelligent components	None or dedicated problem solvers	Individual agent-based reasoning	Cooperating agent swarm reasoning
System control	Manually controlled, Feedback controlled	Adaptive and self-adaptive control	Intelligent control according to goal driven operational scenarios
Placement in context	Largely independent of context	Context sensitive (situated) operation	Context driven operation
Adaptability	Partial external modifiability	Self-adapting capabilities	Self-evolving capabilities
Heterogeneity	Mono-disciplinary system	Multi-disciplinary system	Trans-disciplinary system

Shortcomings of the existing tools

- Composability concerns remained unsolved
- Are not suitable for system-level design
- Apply too much simplification
- Ignore physical attributes

Overview of the research

The research problem There is no suitable tool ... Initiating a solution A theoretical framework **Developing the idea** Methodological fundamentals **Feasibility test** Warehouses and procedures **Validation** Benchmarking against other tools

Landscape of tools

Theoretical framework

Mereo-operandi theory

Architecture

Mereotopology

Operations

Engineering modus operandi

Theoretical framework

Mereo-operandi theory

Theoretical framework

Mereo-operandi theory

- 1. System manifestation feature (SMF)
- 2. Operation and architecture concurrently and linked together
- 3. A uniform structure
- 4. Multi-granularity

System Manifestation Feature (SMF)

System Manifestation Feature (SMF)

- A kind of system-level feature
- Reusable modeling entity
- Representing components (SW, HW, CW, AW) uniformly
- Captures both operation- and architecture- related info chunks, as well as their relations
- Supports multi-granularity
- Language independent
- Semantic-rich

System Manifestation Feature (SMF)

Architecture Operation

Lifecycle

SMF Instance Lifecycle SMF Instance **SMF** SMF Instance Instance

SMF Lifecycle

Lifecycle

SMF tool box

GT database

PT database

Model database

Meta-Model database

Affordances of SMF-TB

Imposing strictly physical view

Concurrent consideration of architecture and operation

Uniform information structures for heterogeneous components

Multi-level multi-granularity

Multi-aspect coupling among SMFs

Multi-stage model composition

Multi-purpose system-level features

Multiple application context

Multi-component warehouses

Active ontologies

Aspects of benchmarking

A1: Addressing heterogeneity of CPSs

A2: Addressing integrity of CPSs:

A3: Addressing complexity of CPSs:

A4: Addressing information comprehensiveness:

A5: Addressing tool implementation:

Publications

- Pourtalebi, S., Horváth, I., & Opiyo, E. (2013). **Multi-aspect study of mass customization in the context of cyber-physical consumer durables**. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V004T05A006-V004T05A006.
- Pourtalebi, S., Horváth, I., & Opiyo, E. (2014). **New features imply new principles? deriving design principles for mass customization of cyber-physical consumer durables**. Proceedings of the TMCE, Budapest, Hungary, 95-108.
- Pourtalebi, S., Horváth, I., & Opiyo, E. Z. (2014a). First steps towards a mereo-operandi theory for a system feature-based architecting of cyber-physical systems. In GI-Jahrestagung, pp. 2001-2006.
- Pourtalebi, S., Horváth, I., & Opiyo, E. Z. (2014b). **New features imply new principles? Deriving design principles for mass customization of cyber-physical consumer durables**. In Proceedings of the 10th international symposium on tools and methods of competitive engineering TMCE 2014, Budapest, Hungary, May 19-23, 2014, Delft University of Technology.
- Horváth, I., & Pourtalebi, S. (2015). Fundamentals of a mereo-operandi theory to support transdisciplinary modeling and co-design of cyber-physical systems. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V01AT02A005-V01AT02A005.
- Pourtalebi, S., & Horváth, I. (2016a). **Towards a methodology of system manifestation features-based pre-embodiment design**. Journal of Engineering Design, 1-37.
- Pourtalebi, S., & Horváth, I. (2016b). Information schema constructs for defining warehouse databases of genotypes and phenotypes of system manifestation features. Frontiers of Information Technology & Electronic Engineering, vol. x, no. x, pp. x-x.
- Pourtalebi, S., & Horváth, I. (2017). **Information schema constructs for instantiation and composition of system manifestation features**. Frontiers of Information Technology & Electronic Engineering, vol. x, no. x, pp. x-x.
- Pourtalebi, S., & Horváth, I. (2018). **Benchmarking the conceptual framework of a system-level manifestation features-based toolbox**, (in preparation for journal publication), pp. x-x.